Propagasi in vitro tanaman kurma (Phoenix dactylifera L.) pada bioreaktor dengan perendaman sesaat

Rizka Tamania SAPTARI, Masna Maya SINTA, Imron RIYADI, . PRIYONO, . SUMARYONO

Abstract


The cultivation of date palm in Indonesia has increased since the last decade. However, the superior date palm seedlings are still limited and most of them are imported from other countries. The mass supply of superior date palm seedlings can be provided by in vitro propagation in the bioreactor. Therefore, the research was conducted to develop a protocol of date palm in vitro propagation by using Temporary Immersion Bioreactor (TIB). The in vitro propagation was carried out through somatic embryogenesis technique using meristematic tissues isolated from offshoots of date palm female clone cv. Zambli as explants. The explants were sterilized and then cultured to produce embryogenic calli and somatic embryos. Afterwards, somatic embryos germination and plantlets formation were conducted in TIB with treatments of immersion period: 3, 10, and 30 minutes every 6 hours, with 8 replications, The results showed that the optimal somatic embryo germination in TIB was with the immersion period of 30 min every 6 h, resulting in the most formation of shoots and fresh biomass weight increment up to nearly threefold in 6 weeks. Thereafter, plantlets formation in TIB with immersion period of 10 min and 30 min every 6 h exhibited similar performances in producing more plantlets with higher total fresh weight and better vigor than those of 3 min every 6 h. However, there were more rooted plantlets in the TIB with immersion period of 10 min every 6 h. Based on the results, an in vitro propagation protocol via somatic embryogenesis in TIB has been successfully developed for mass propagation of date palm cv. Zambli, which produced plantlets with good vigor and rooting.


Keywords


somatic embryogenesis, immersion period, immersion interval, TIB, Zambli

Full Text:

90-99 PDF

References


Abahmane L (2020). A comparative study between temporary immersion system and semi-solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (Phoenix dactylifera L.) varieties in vitro. Not Sci Biol, 12(2), 277-288.

Abohatem MA, Y Bakil & M Baaziz (2017). Plant regeneration from somatic embryogenic suspension cultures of date palm. In eds. J. M. Al-Khayri, S. M. Jain & D. V. Johnson, Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications. New York, Springer New York, 203-214

Al-Khayri JM (2012). Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emirates J Food Agric, 24(5), 444-455.

Al-Khayri JM (2018). Somatic embryogenesis of date palm (Phoenix dactylifera L.) from shoot tip explants. In eds. S. M. Jain & P. Gupta, Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants: Volume II. Cham: Springer International Publishing. 231-244

Al-Mayahi AMW (2015). An efficient protocol for indirect somatic embryogenesis and shoot organogenesis from leaf segments of date palm (Phoenix dactylifera L.) CV. Quntar. African J Agric Res, 10(10), 1031-1042.

Alvard D, F Cote & C Teisson (1993). Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell, Tiss Org Cult, 32(1), 55-60.

Apriyanti RN, E Pujiastuti & DS Rahimah (2016). Kurma dari gurun ke tropis. Jakarta, Trubus Swadaya, 2016, 1-224

Ascough GD & CW Fennell (2004). The regulation of plant growth and development in liquid culture. South Afr J Bot, 70(2), 181-190.

Aslam J, SA Khan, AJ Cheruth, A Mujib, MP Sharma & PS Srivastava (2011). Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi J Biol Sci, 18(4), 369-380.

BPS. 2020. Impor. In Statistik Perdagangan Luar Negeri, ed. BPS, 1-177. Jakarta, BPS.

Carlsson J, U Egertsdotter, U Ganeteg & H Svennerstam (2019). Nitrogen utilization during germination of somatic embryos of Norway spruce: revealing the importance of supplied glutamine for nitrogen metabolism. Trees, 33(2), 383-394.

Cueva Agila AY, I Guachizaca & R Cella (2015). Combination of 2,4-D and stress improves indirect somatic embryogenesis in Cattleya maxima Lindl. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 149(2), 235-241.

El Dawayati MM, OH Abd El Bar, ZE Zaid & AFM Zein El Din (2012). In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palm cv. Gundila under desiccation effect of polyethelyne glycol treatments. Annals of Agricultural Sciences, 57(2), 117-128.

Emoghene B, O Asemota, C Eke, M Idu, E Aghimien & A Nwite (2018). Evaluation of optimum concentration of naphthalene acetic acid on in vitro rooting and acclimatization of tissue culture date palm (Phoenix dactylifera L.) plantlets. J Appl Sci Environ Manage, 22(10), 1595-1598.

Etienne H, E Dechamp, D Barry-Etienne & B Bertrand (2006). Bioreactors in coffee micropropagation. Braz J Plant Physiol, 18(1), 45-54.

Fki L, N Bouaziz, W Kriaa, R Benjemaa-Masmoudi, R Gargouri-Bouzid, A Rival & N Drira (2011a). Multiple bud cultures of ‘Barhee’ date palm (Phoenix dactylifera) and physiological status of regenerated plants. J Plant Physiol, 168(14), 1694-1700.

Fki L, W Kriaa, A Nasri, E Baklouti, O Chkir, RB Masmoudi, A Rival & N Drira (2017). Indirect somatic embryogenesis of date palm using juvenile leaf explants and low 2,4-D concentration. In eds. J. M. Al-Khayri, S. M. Jain & D. V. Johnson, Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications. New York, Springer New York, 99-106

Fki L, R Masmoudi, W Kriaa, A Mahjoub, B Sghaier, R Mzid, A Mliki, A Rival & N Drira (2011b). Date palm micropropagation via somatic embryogenesis. In ed. A.-K. J. M. J. D. V. Jain Shri Mohan, Date palm biotechnology. Dordrecht, Pays-Bas, Springer, 47-68

Georgiev V, A Schumann, A Pavlov & T Bley (2014). Temporary immersion systems in plant biotechnology. Eng Life Sci, 14(6), 607-621.

Gurra-Downs. 2019. Field trial date palms. Adelaide, Gurra Downs Date Company Pty Ltd.

Hassan MM, IA Ibrahim, NM Fathy, MKH Ebrahim & E Komor (2014). Protocol for micropropagated date palm acclimatization: Effect of micropropagated plantlet type, soil composition, and acclimatization season. International Journal of Fruit Science, 14(2), 225-233.

Hassan MM & RA Taha (2012). Callogenesis, somatic embryogenesis and regeneration of date palm Phoenix dactylifera L. cultivars affected by carbohydrate sources. Int J Agric Res, 7(5), 231-242.

Heringer AS, T Barroso, AF Macedo, C Santa-Catarina, GHMF Souza, EIS Floh, GA de Souza-Filho & V Silveira (2015). Label-Free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLOS ONE, 10(6), e0127803.

Jones MPA, Z Yi, SJ Murch & PK Saxena (2007). Thidiazuron-induced regeneration of Echinacea purpurea L.: Micropropagation in solid and liquid culture systems. Plant Cell Rep, 26(1), 13-19.

Kasi PD & Sumaryono (2008). Perkembangan kalus embriogenik sagu (Metroxylon sagu Rottb.) pada tiga sistem kultur in vitro. Menara Perkebunan, 76(1), 1-10.

Krishnan SS & E Siril (2017). Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiol Molec Biol Plants, 23(2), 471-475.

Naik PM & JM Al-Khayri (2016). Somatic Embryogenesis of Date Palm (Phoenix dactylifera L.) Through Cell Suspension Culture. Methods Mol Biol, 1391(357-66.

Navarro BV, P Elbl, AP De Souza, V Jardim, LF de Oliveira, AF Macedo, ALW dos Santos, MS Buckeridge & EIS Floh (2017). Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLOS ONE, 12(7), e0180051.

Nic-Can GI, JR Avilez-Montalvo, RN Aviles-Montalvo, RE Márquez-López, E Mellado-Mojica, RM Galaz-Ávalos & VM Loyola-Vargas (2016). The relationship between stress and somatic embryogenesis. In, Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, 151-170

Oliveira EJ, AD Koehler, DI Rocha, LM Vieira, MVM Pinheiro, EM de Matos, ACF da Cruz, TCR da Silva, FAO Tanaka, FTS Nogueira & WC Otoni (2017). Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon. Protoplasma, 254(5), 2017-2034.

Othmani A, C Bayoudh, N Drira & M Trifi (2009). In vitro cloning of date palm Phoenix dactylifera L., Cv. Deglet Bey by using embryogenic suspension and temporary immersion bioreactor (TIB). Biotechnol Biotechnol Equip, 23(2), 1181-1188.

Othmani A, C Bayoudh, A Sellemi & N Drira (2017). Temporary immersion system for date palm micropropagation. In eds. J. M. Al-Khayri, S. M. Jain & D. V. Johnson, Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications. New York, Springer New York, 239-249

Parrilla J, C Gaillard, J Verbeke, M Maucourt, RA Aleksandrov, F Thibault, P Fleurat-Lessard, Y Gibon, D Rolin & R Atanassova (2018). Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio, 8(5), 784-798.

Passamani LZ, AA Bertolazi, AC Ramos, C Santa-Catarina, JJ Thelen & V Silveira (2018). Embryogenic competence acquisition in sugar cane callus is associated with differential H+-Pump abundance and activity. J Proteome Res, 17(8), 2767-2779.

Rahmadani RA, S Bulkis & MA Budiman. 2017. Potensi budidaya kurma di Indonesia ditinjau dari perspektif ekonomis dan ekologis. In Prosiding Seminar Nasional ASBIS, 427-437. Banjarmasin, Politeknik Negeri Banjarmasin.

Salo HM, T Sarjala, A Jokela, H Häggman & J Vuosku (2016). Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. Tree Physiol, 36(3), 392-402.

Silveira V, AM de Vita, AF Macedo, MFR Dias, EIS Floh & C Santa-Catarina (2013). Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tiss Org Cult, 114(3), 351-364.

Sumaryono, I Riyadi, P Kasi & G Ginting (2008). Growth and differentiation of embryogenic callus and somatic embryos of oil palm (Elaeis guineensis Jacq.) in temporary immersion system. J Agric, 1(2), 109-114.

Vidal N & C Sánchez (2019). Use of bioreactor systems in the propagation of forest trees. Eng Life Sci, 19(12), 896-915.

Watt MP (2012). The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol, 11(76), 14025-14035.

Zivdar S, M Mousawi & NA Ansari (2008). Genetic stability in date palm micropropagation. Asian J Plant Sci, 7(8), 775.




DOI: http://dx.doi.org/10.22302/iribb.jur.mp.v88i2.394

Article Metrics

Abstract view : 51 times
90-99 PDF - 28 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 E-Journal Menara Perkebunan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CALL FOR PAPERS:

Menara Perkebunan as a communication media for research in Plantation sector opens opportunities for researchers and academics to write:
- original research results, technology development, or review of biotechnology and bioindustry and its application in agriculture, health and environment as well as other aspects of biotechnology.



MENARA PERKEBUNAN Indexed by:
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ADDRESS:

INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY
PT. RISET PERKEBUNAN NUSANTARA
Jl. Taman Kencana No. 1, Bogor 16128. Telp. 0251-8324048/8327449. Fax. 0251-8328516
E-mail : menaraperkebunanppbbi@gmail.com http://mp.iribb.org