Respons tanaman tebu (Saccharum officinarum L.) terhadap aplikasi konsorsium biostimulan di tiga tipologi lahan

Authors

  • Ciptadi Achmad YUSUP Indonesian Research Institute for Biotechnology and Bioindustry http://orcid.org/0000-0003-0846-8751
  • Deddy PURWANTORO Pusat Penelitian Perkebunan Gula Indonesia, Jl. Pahlawan No. 25, Pasuruan 67126, Indonesia
  • Happy WIDIASTUTI Indonesian Research Institute for Biotechnology and Bioindustry
  • . SISWANTO Indonesian Research Institute for Biotechnology and Bioindustry
  • Djoko SANTOSO Indonesian Research Institute for Biotechnology and Bioindustry
  • . PRIYONO Indonesian Research Institute for Biotechnology and Bioindustry

DOI:

https://doi.org/10.22302/iribb.jur.mp.v89i2.457

Keywords:

humic acid, biostimulant, bululawang, phytohormone, jatiroto, mycorrhiza

Abstract

The consortium biostimulant combines several types of biostimulant applied holistically, such as phytohormones to induce physiological processes, humic acid to improve nutrition intake and land fertility, and biofertilizer arbuscular mycorrhizal fungi to improve abiotic stress tolerance. The objectives of this research were to analyze the effect of application consortium biostimulant on the growth and productivity of Bululawang sugarcane variety planted in three land typologies, i.e. irrigated heavy soil with good drainage (BPL), irrigated heavy soil with poor drainage (BPJ), and rainfed light soil with good drainage (RHL). The research was conducted on plant cane (PC) sugarcane areal in Lumajang Regency, East Java, from July 2019 to September 2020. The treatment plot area was 1 ha for each land typologies, and the observation were conducted on 10 m plant row with ten times replications. Each treatment was replicated ten times. The results showed that the application of consortium biostimulant could induce faster growth of sugarcane shoots and better roots at one month after planting (MAP). Stalk height and diameter showed significantly different values between treatment and control at the plant age 6 to 12 MAP. In addition, the sugarcane stalk weight per meter row also increases by 13.72 – 28.57%. The growth performance of sugarcane on a commercial scale increased, also sugarcane productivity increased by 11.08 – 20.36%. The potential sugar yield increased by 15.05% in BPL land typology, 4.9% in BPJ land typology, and 9.7% in RHL land typology. The difference in land typologies affected the effectiveness of the consortium biostimulant application in increasing sugarcane productivity.

Downloads

Download data is not yet available.

References

Abbas S (2013). The influence of biostimulants on the growth and on the biochemical composition of Vicia faba cv. Giza 3 beans. Romanian Biotechnological Letters 18(2), 8061–8068.

Amir R, F Munir, M Khan & T Iqbal (2019). Use of plant hormones for the improvement of plant growth and production under salt stress. In: Akhtar MS (ed.), Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1. Singapore, Springer Singapore p. 59–90.

Apriscia C, N Barunawati & K Wicaksono (2018). Pengaruh pemberian pupuk kompos limbah domestik terhadap pertumbuhan vegetatif tanaman tebu (Saccharum officinarum L.) asal bibit bud chip. Plantropia 1(2), 9–15.

Ardiyansyah B & Purwono (2015). Mempelajari pertumbuhan dan produktivitas tebu (Saccharum officinarum L.) dengan masa tanam sama pada tipologi lahan berbeda. Buletin Agrohorti 3(3), 357–365.

Balliu A, G Sallaku & B Rewald (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability. 7(12), 15967–15981.

Begum N, C Qin, MA Ahanger, S Raza, MI Khan, M Ashraf, N Ahmed & L Zhang (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10, 1068.

Berbara RLL & AC García (2014). Humic substances and plant defense metabolism. In: Ahmad P & MR Wani (eds.), Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment Vol. 1. United State, Springer New York p. 297–319.

Calvo P, L Nelson & JW Kloepper (2014). Agricultural uses of plant biostimulants. Plant and Soil 383(1–2), 3–41.

Dashora P (2012). Productivity and sustainability of sugarcane (Saccharum officinarum L.) genotypes under various planting seasons and fertility levels in south-east Rajasthan-Indian Journals. Crop Research 44(3), 432–436.

Dehkordi RA, SR Roghani, S Mafakheri & B Asghari (2021). Effect of biostimulants on morpho-physiological traits of various ecotypes of fenugreek (Trigonella foenum-graecum L.) under water deficit stress. Scientia Horticulturae 283, 110077.

Djumali, AD Khuluq & DS Mulyaningsih (2016). Pertumbuhan dan produktivitas tebu pada beberapa paket tata tanam di lahan kering. Jurnal Agronomi Indonesia 44(2), 211.

Elansary HO, EA Mahmoud, DO El-Ansary & MA Mattar (2019). Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy 10(1), 6.

Fleishon S, E Shani, N Ori & D Weiss (2011). Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytologist 190(3), 609–617.

Francesca S, C Arena, B Hay Mele, C Schettini, P Ambrosino, A Barone & MM Rigano (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10(3), 363.

Fukami J, FJ Ollero, M Megías & M Hungria (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7(1), 1–13.

Ghaffar A, Ehsanullah, N Akbar, SH Khan, K Jabran, RQ Hashmi, A Iqbal & MA Ali (2012). Effect of trench spacing and micronutrients on growth and yield of sugarcane (Saccharum officinarum L.). Australian Journal of Crop Science 6(1), 1–9.

Gomathi R, PNG Rao, P Rakkiyappan, BP Sundara & S Shiyamala (2013). Physiological studies on ratoonability of sugarcane varieties under tropical indian condition. American Journal of Plant Sciences 4(2), 274–281.

Halpern M, A Bar-Tal, M Ofek, D Minz, T Muller & U Yermiyahu (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130, 141–174.

Irsyad M, WB Widyasari, L Soetopo & D Damanhuri (2016). Penampilan 15 klon harapan tebu (Saccharum spp. Hybrid) di dua lokasi. Jurnal Produksi Tanaman 4(3), 199–208.

du Jardin P (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196, 3–14.

Junejo S, GM Kaloi, RN Panhwar, M Chohan, AA Junejo & AF Soomro (2010). Performance of some newly developed sugarcane genotypes for some quantitative and qualitative traits under thatta conditions. The Journal of Animal & Plant Sciences 20(1), 40–43.

Kang MS & JD Miller (1984). Genotype x environment interactions for cane and sugar yield and their implications in sugarcane breeding. Crop Science 24(3), 435–440.

Khuluq AD & S Mulyaningsih (2016). Pertumbuhan dan produktivitas tebu pada beberapa paket tata tanam di lahan kering. Jurnal Agronomi Indonesia 44(2), 211-220.

Kiseleva AA, ER Tarachovskaya & MF Shishova (2012). Biosynthesis of phytohormones in algae. Russian Journal of Plant Physiology 59(5), 595–610.

Leovici H, D Kastono & ETS Putra (2014). Pengaruh macam dan konsenterasi bahan organik sumber zat pengatur tumbuh alami terhadap pertumbuhan awal tebu (Saccharum officinarum L.). Vegetalika 3(1), 22–34.

Li L, H Ma, J Xing, F Liu & Y Wang (2020). Effects of water deficit and nitrogen application on leaf gas exchange, phytohormone signaling, biomass and water use efficiency of oat plants. Journal of Plant Nutrition and Soil Science 183(6), 695–704.

Lubis M, L Mawarni & Y Husni (2015). Respons pertumbuhan tebu (Sacharum officinarum L.) terhadap pengolahan tanah pada dua kondisi drainase. Jurnal Online Agroekoteknologi 3(1), 214–220.

Luo J, YB Pan, L Xu, Y Zhang, H Zhang, R Chen & Y Que (2014). Photosynthetic and canopy characteristics of different varieties at the early elongation stage and their relationships with the cane yield in sugarcane. The Scientific World Journal 2014 (707095), 1-9.

Müller D & O Leyser (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany 107(7), 1203–1212.

Pamenan SB, D Siahaan & Lannita (1989). Pengembangan tebu lahan kering. In: Prosiding Seminar Budidaya Lahan Kering. Pasuruan, Indonesia. p, 615–627.

Parađiković N, T Teklić, S Zeljković, M Lisjak & M Špoljarević (2019). Biostimulants research in some horticultural plant species—A review. Food and Energy Security 8(2), e00162.

Polo J & P Mata (2018). Evaluation of a biostimulant (pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress ambient field conditions. Frontiers in Plant Science 8, 2261.

Radite S & BH Simanjuntak (2020). Penggunaan asam humat sebagai pelapis urea terhadap pertumbuhan dan hasil tanaman pakcoy (Brassica rapa L.). Agriland 8(1), 72–78.

Raj K & C Krishnan (2018). High sugar yields from sugarcane (Saccharum officinarum) bagasse using low-temperature aqueous ammonia pretreatment and laccase-mediator assisted enzymatic hydrolysis. Industrial Crops and Products 111, 673–683.

Robbins NE & JR Dinneny (2018). Growth is required for perception of water availability to pattern root branches in plants. Proceedings of the National Academy of Sciences 115(4), E822–E831.

Rossler RL, A Singels, FC Olivier & JM Steyn (2013). Growth and yield of a sugarcane plant crop under water stress imposed through deficit drip irrigation. Proceedings of South Africa Sugar Technologist Association 86, 170–183.

Rouphael Y & G Colla (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science 11, 40.

Santoso D, A Gunawan, A Budiani, DA Sari & Priyono (2018). Plant biostimulant to improve crops productivity and planters profit. IOP Conference Series: Earth and Environmental Science 183, 12017.

Shah ZH, HM Rehman, T Akhtar, H Alsamadany, BT Hamooh, T Mujtaba, I Daur, Y al Zahrani, HAS Alzahrani, S Ali, Yang SH & Chung G (2018). Humic substances: determining potential molecular regulatory processes in plants. Frontiers in Plant Science 9, 263.

Sharma HSS, C Fleming, C Selby, JR Rao & T Martin (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26(1), 465–490.

Silva CM, MC Gonçalves-Vidigal, PSV Filho, CA Scapim, E Daros & L Silvério (2005). Genetic diversity among sugarcane clones (Saccharum spp.). Acta Scientiarum Agronomy 27(2), 315–319.

Sugiyarta E (2012). Revitalisasi on Farm Berbasis Penataan Varietas pada Budidaya Tanaman Tebu. Pertemuan Teknis P3GI. Indonesia: Pasuruan p, 5.

Tyagi VK, S Sharma & SB Bhardwaj (2012). Pattern of association among cane yield, sugar yield and their components in sugarcane (Saccharum officinarum L.). Journal of Agricultural Research 50(1), 29–38.

Verma RR, TK Srivastava & P Singh P (2019). Climate change impacts on rainfall and temperature in sugarcane growing upper gangetic plains of India. Theoretical and Applied Climatology 135(1–2), 279–292.

Wahyuni S, HS Habibullah, SM Putra, DM Amanah, Siswanto, Priyono, D Santoso & SJ Pardal (2018). Biostimulation of vegetative growth of sugarcane (Saccharum officinarum L.) in the initial phase on dry land. Menara Perkebunan 86(2), 91-95.

Wise K, H Gill & J Selby-Pham (2020). Willow bark extract and the biostimulant complex Root Nectar® increase propagation efficiency in chrysanthemum and lavender cuttings. Scientia Horticulturae 263, 109108.

Zeng X-P, K Zhu, JM Lu, Y Jiang, LT Yang, YX Xing & YR Li (2020). Long-term effects of different nitrogen levels on growth, yield, and quality in sugarcane. Agronomy 10(3), 353.

Downloads

Submitted

23-06-2021

Accepted

11-10-2021

Published

29-10-2021

How to Cite

YUSUP, C. A., PURWANTORO, D., WIDIASTUTI, H., SISWANTO, ., SANTOSO, D., & PRIYONO, . (2021). Respons tanaman tebu (Saccharum officinarum L.) terhadap aplikasi konsorsium biostimulan di tiga tipologi lahan. Menara Perkebunan, 89(2). https://doi.org/10.22302/iribb.jur.mp.v89i2.457

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>