Pengaruh kombinasi kitosan soluble liquid dan pestisida sintetik terhadap pertumbuhan dan hasil panen cabai keriting di Nganjuk

Ciptadi Achmad YUSUP, Sri WAHYUNI, Deden Dewantara ERIS, Priyono PRIYONO, Siswanto SISWANTO

Abstract


Chitosan has the potential as a biostimulant also as an antagonistic agent due to its antimicrobial activity. These dual benefits were the superiority of chitosan and potentially to be developed further. The objective of this study was to analyze the effect of soluble liquid (SL) chitosan on the growth and yield of curly chili. The variety of curly chili used was Kribo with three treatments examined i.e. the application of single chitosan SL (P1), the combination of chitosan SL and synthetic pesticide (P2), and the conventional application of synthetic pesticide that considered as control (K). Each treatment was replicated four times. The application of chitosan SL was conducted at 21, 42, and 63 days after planting (DAP), while the application of synthetic pesticide was conducted depending on the field conditions. The plant parameters observed were canopy width, plant height, leaf color, and number, and weight of fruits. The observation results were analyzed using table of variance. The results showed that the application of chitosan SL increased the canopy width by 16.3% and plant height by 11.5% compared to control at 99 DAP. The number of fruits per plant also increased by 123% on P1 and 20% on P2 treatment. The fruit weight was also increased by 42.6% on P2 and 18% on P1 treatment. The conversion result showed that single chitosan SL application was able to increase the yield of curly chili per hectare up to 163%, while the combination of chitosan SL and synthetic pesticide resulted in 71% increase in curly chili yield compared to the control.

[Keywords: antagonistic agent, biostimulant, chili var. Kribo, production, soluble liquid]

 Abstrak

mikroba. Kedua manfaat ini yang menjadi keunggulan kitosan dan berpotensi untuk dikembangkan lebih lanjut. Penelitian ini bertujuan untuk menganalisis pengaruh aplikasi kitosan soluble liquid (SL) terhadap pertumbuhan dan hasil panen tanaman cabai keriting. Varietas cabai keriting yang digunakan adalah Kribo dengan tiga perlakuan yang diuji, yakni aplikasi kitosan SL tunggal (P1), kombinasi kitosan SL dengan pestisida sintetik (P2) dan aplikasi pestisida sintetik secara konvensional sebagai kontrol (K). Masing-masing perlakuan diulang empat kali. Aplikasi kitosan SL dilakukan pada umur tanaman 21, 42 dan 63 hari setelah tanam (HST), sedangkan aplikasi pestisida sintetik dilakukan berdasarkan kondisi di lapangan.  Parameter tanaman yang diamati antara lain lebar kanopi, tinggi tanaman, warna daun, serta jumlah, dan berat buah. Hasil pengamatan dianalisis menggunakan tabel sidik ragam. Hasil penelitian menunjukkan bahwa aplikasi kitosan SL mampu meningkatkan lebar kanopi dan tinggi tanaman sebesar 16,3% dan 11,5% terhadap kontrol pada umur tanaman 99 HST. Jumlah buah per tanaman juga mengalami kenaikan sebesar 123% pada perlakuan P1 dan 20% pada perlakuan P2. Berat per buah mengalami kenaikan sebesar 42,6% pada perlakuan P2 dan 18% pada perlakuan P1. Hasil konversi menunjukkan bahwa aplikasi kitosan SL tunggal mampu meningkatkan produksi cabai keriting per hektar hingga 163%, sedangkan aplikasi kombinasi kitosan SL dan pestisida sintetik meningkatkan produksi sebesar 71% dibandingkan kontrol.

[Kata kunci:  agen antagonis, biostimulan, cabai var. Kribo, produksi, soluble liquid]


Keywords


Agen Antagonis; Biostimulan; Kribo; Produksi; Soluble Liquid

Full Text:

32-39 PDF

References


Abdullah NHL, S Salleh & ANA Wahid (2019). Influence of liquid biofertilizer, oligochitosan and chemical fertilizer on plant growth and yield of greenhouse-grown okra, abelmoschus esculentus (l.). Proceedings of the Research and Development Seminar Nuklear Malaysia 2018 Nuclear Technology Towards Sustainable Development, 275-275.

Al-Hetar MY, MA Zainal Abidin, M Sariah & MY Wong (2011). Antifungal activity of chitosan against fusarium oxysporum f. Sp. Cubense. J. Appl. Polym. Sci., 120(4), 2434-2439.

Ali A, N Zahid, S Manickam, Y Siddiqui, PG Alderson & M Maqbool (2014). Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Protect., 63(83-88.

Barikani M, E Oliaei, H Seddiqi & H Honarkar (2014). Preparation and application of chitin and its derivatives: A review. Iranian Polymer Journal 2014 23:4, 23(4), 307-326.

Berlian Z, S Syarifah & DS Sari (2015). Pengaruh pemberian limbah kulit kopi (coffea robusta l.) terhadap pertumbuhan cabai keriting (Capsicum annum l.). Jurnal Biota, 1(1), 22-32.

Chookhongkha N, S Miyagawa, Y Jirakiattikul & S Photchanachai. 2012. Chili growth and seed productivity as affected by chitosan. 146-149. Manila.

De Vega D, N Holden, PE Hedley, J Morris, E Luna & A Newton (2021). Chitosan primes plant defence mechanisms against botrytis cinerea, including expression of avr9/cf-9 rapidly elicited genes. Plant, Cell Environ., 44(1), 290-303.

El-Miniawy SM, ME Ragab, SMS Youssef & AAF Metwally (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences, 9(6), 366-372.

Eris DD, S Wahyuni, SM Putra, CA Yusup, AS Mulyatni, S Siswanto, EH Krestini & C Winarti (2019). Pengaruh nanokitosan-ag/cu pada perkembangan penyakit antraknosa pada cabai. Jurnal Ilmu Pertanian Indonesia, 24(3), 201-208.

Hassan O & T Chang (2017). Chitosan for eco-friendly control of plant disease. Article in Asian Journal of Plant Pathology, 11(2), 53-70.

Hazra DK & A Purkait (2019). Role of pesticide formulations for sustainable crop protection and environment management: A review. Journal of Pharmacognosy and Phytochemistry, 8(2), 686-693.

Jia X, Q Meng, H Zeng, W Wang & H Yin (2016). Chitosan oligosaccharide induces resistance to tobacco mosaic virus in arabidopsis via the salicylic acid-mediated signalling pathway. Scientific Reports 2016 6:1, 6(1), 1-12.

Li B, Y Zhang, Y Yang, W Qiu, X Wang, B Liu, Y Wang & G Sun (2016). Synthesis, characterization, and antibacterial activity of chitosan/tio2 nanocomposite against xanthomonas oryzae pv. Oryzae. Carbohydrate Polymers, 152, 825-831.

Liu J, X Zhang, JF Kennedy, M Jiang, Q Cai & X Wu (2019a). Chitosan induces resistance to tuber rot in stored potato caused by alternaria tenuissima. International Journal of Biological Macromolecules, 140, 851-857.

Liu Y, Y Jiang, J Zhu, J Huang & H Zhang (2019b). Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against pseudomonas aeruginosa. Carbohydrate Polymers, 206, 412-419.

López-Mora LI, P Gutiérrez-Martínez, S Bautista-Baños, LF Jiménez-García & HA Zavaleta-Mancera (2013). Evaluation of antifungal activity of chitosan in alternaria alternata and in the quality of 'tommy atkins' mango during storage. Revista Chapingo. Serie Horticultura, 19(3), 315-331.

Mahmood I, SR Imadi, K Shazadi, A Gul & KR Hakeem (2016). Effects of pesticides on environment. In: K. R. Hakeem, M. S. Akhtar & S. N. A. Abdullah (ed). Plant, soil and microbes: Volume 1: Implications in crop science. Cham, Springer International Publishing. P. 253-269.

Maluin FN, MZ Hussein, NA Yusof, S Fakurazi, AS Idris, NH Zainol Hilmi & LD Jeffery Daim (2019). Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating ganoderma disease in oil palm. Molecules, 24(13), 2498.

Meilin A (2014) Hama dan penyakit pada tanaman cabai serta pengendaliannya. Balai Pengkajian Teknologi Pertanian Jambi, 2014,

Mejdoub-Trabelsi B, S Touihri, N Ammar, A Riahi & M Daami-Remadi (2020). Effect of chitosan for the control of potato diseases caused by fusarium species. J. Phytopathol., 168(1), 18-27.

Mondal MMA, MA Malek, A Puteh & MR Ismail (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6(5), 918-921.

Moon C, D-J Seo, Y-S Song & W-J Jung (2020). Antibacterial activity of various chitosan forms against xanthomonas axonopodis pv. Glycines. International Journal of Biological Macromolecules, 156(1600-1605.

Muñoz Z, A Moret & S Garcés (2009). Assessment of chitosan for inhibition of colletotrichum sp. On tomatoes and grapes. Crop Protect., 28(1), 36-40.

Nagorskaya V, A Reunov, L Lapshina, V Davydova & I Yermak (2014). Effect of chitosan on tobacco mosaic virus (tmv) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of n. Tabacum l. Cv. Samsun. Virol. Sin., 29(4), 250-256.

Nguyen Van S, H Dinh Minh & D Nguyen Anh (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289-294.

Oh J-W, SC Chun & M Chandrasekaran (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1), 21.

Park K-C & T-H Chang (2012). Effect of chitosan on microbial community in soils planted with cucumber under protected cultivation. Horticultural Science & Technology, 30(3), 261-269.

Pichyangkura R & S Chadchawan (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 49-65.

Salachna P & A Zawadzińska (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of Ecological Engineering, 15(3), 97-102.

Sathiyabama M, G Akila & R Einstein Charles (2014). Chitosan-induced defence responses in tomato plants against early blight disease caused by alternaria solani (ellis and martin) sorauer. Arch. Phytopathol. Plant Protect., 47(14), 1777-1787.

Sunpapao A & C Pornsuriya (2014). Effects of chitosan treatments on para rubber leaf fall disease caused by phytophthora palmivora butler-a laboratory study. J. Sci. Technol, 36(5), 507-512.

Wahyudin I & AM Sari (2012). Pengaruh waktu pengadukan terhadap rendemen nanopartikel kitosan pada proses pembuatan nanopartikel kitosan dengan cara pengendapan. Konversi, 1(2), 1-4.

Xing K, X Zhu, X Peng & S Qin (2014). Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron. Sustain. Dev., 2015(35), 569-588.

Yudhasasmita S & AP Nugroho (2017). Sintesis dan aplikasi nanopartikel kitosan sebagai adsorben cd dan antibakteri koliform. Biogenesis, 5(1), 42-48.




DOI: http://dx.doi.org/10.22302/iribb.jur.mp.v90i1.481

Article Metrics

Abstract view : 148 times
32-39 PDF - 53 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 E-Journal Menara Perkebunan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CALL FOR PAPERS:

Menara Perkebunan as a communication media for research in Plantation sector opens opportunities for researchers and academics to write:
- original research results, technology development, or review of biotechnology and bioindustry and its application in agriculture, health and environment as well as other aspects of biotechnology.



MENARA PERKEBUNAN Indexed by:
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ADDRESS:

INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY
PT. RISET PERKEBUNAN NUSANTARA
Jl. Taman Kencana No. 1, Bogor 16128. Telp. 0251-8324048/8327449. Fax. 0251-8328516
E-mail : menaraperkebunanppbbi@gmail.com http://mp.iribb.org