Application of silica solubilizing bacteria increases water efficiency in maize

Indah Puspita SARI, Yulin LESTARI, HAMIM HAMIM, Laksmita Prima SANTI

Abstract


Abstract

Global climate change will result in decreased rainfall and increased evaporation. Thus, it is estimated that the frequency and severity of drought stress will get worse. Silica increases plant drought resistance by improving water use efficiency in plants. Despite its abundant availability in soil, most silica sources are not available to plants due to their low solubility. Silica solubilizing bacteria (SSB) have an important role in increasing the available silica. This study aims to observe the silica solubilizing activity of three SSB isolates collections of PPBBI on insoluble silica sources, including magnesium trisilicate, quartz, and feldspar, and see their effects on increasing water use efficiency in corn plants via drought experiments. SSB activity was measured using the modified standard method of 4500-SiO2 D Heteropoly blue. Drought control in the greenhouse follows the Snow and Tingey system. The experimental design used a completely randomized design factorial with irrigation conditions and SSB species as variables. Water use efficiency is measured in real-time with a sap flow meter. The results showed that SSB Pseudomonas fluorescens-B41 had the highest silica dissolving activity 81.93 ppm on Mg-trisilicate. The application of SSB can reduce maize transpiration rate and increase water use efficiency up to 84% under moderate drought stress and 46% under normal irrigation, but in severe drought stress, where the nutrient solution was maintained at 25 cm from plant root, water use efficiency was not significant. This is suspected due to the extreme drought conditions in the potting soil so that the applied SSB cannot maintain its activities.

[Keywords: aquaporin, drought stress, Snow and Tingey system, SSB, quartz]


Abstrak

Perubahan iklim global mengakibatkan penurunan curah hujan dan peningkatan evaporasi, sehingga diperkirakan frekuensi dan tingkat keparahan cekaman kekeringan akan semakin tinggi. Silika (Si) diketahui dapat meningkatkan ketahanan tanaman terhadap kekeringan dengan cara memperbaiki efisiensi penggunaan air pada tanaman. Meskipun ketersediaanya berlimpah di tanah, sebagian besar Si dalam bentuk yang tidak tersedia bagi tanaman, karena sifat kelarutannya yang rendah. Untuk meningkatkan silika tersedia bagi tanaman, bakteri pelarut silika (BPS) memiliki peranan yang penting. Penelitian ini bertujuan menguji aktivitas pelarutan silika dari tiga koleksi isolat BPS Pusat Penelitian Bioteknologi dan Bioindustri Indonesia (PPBBI) pada sumber silika tidak larut berupa magnesium trisilikat, kuarsa, dan feldspar, serta melihat pengaruh aplikasi BPS terhadap efisiensi penggunaan air pada tanaman jagung yang diberi perlakuan cekaman kekeringan. Aktivitas pelarutan silika diukur menggunakan modifikasi metode standar 4500-SiO2 D Heteropoly blue. Pengendalian kekeringan di rumah kaca mengadaptasi sistem Snow dan Tingey. Rancangan percobaan menggunakan rancangan acak lengkap faktorial dengan kondisi kekeringan dan jenis bakteri BPS sebagai peubah bebas. Efisiensi penggunaan air diukur secara real time dengan sap flow meter. Hasil penelitian menunjukkan bahwa BPS dengan kode Pseudomonas fluorescens-B.41 memiliki aktivitas pelarutan silika tertinggi pada susbtrat Mg-trisilika yaitu 81,93 ppm. Aplikasi BPS menurunkan laju transpirasi jagung dan meningkatkan efisiensi penggunaan air hingga 84% pada cekaman kekeringan sedang dan 46% pada irigasi normal, namun pada cekaman kekeringan parah, dimana larutan hara dipertahankan pada jarak 25 cm dari sistem perakaran efisiensi penggunaan air tidak signifikan. Diduga hal ini disebabkan kondisi kekeringan pada media tanam terlalu ekstrim sehingga BPS yang diaplikasi tidak dapat mempertahankan aktivitasnya.

[Kata kunci: aquaporin, cekaman kekeringan, sistem Snow dan Tingey, BPS, kuarsa]


Keywords


: aquaporin, drought stress, Snow and Tingey system, SSB, quartz

Full Text:

71-80 PDF

References


Ali N, E Rethore, JC Yvin, & SA Hosseini (2020). The regulatory role of silicon in mitigating plant nutritional stresses. Plant. 9, 1-18.

Antonangelo JA, JF Neto, CAC Cruscio, & LRF Alleoni (2017). Lime and calcium-magnesium silicate in the ionic speciation of an oxisol. Sci. Agric. 74(4), 317-333.

Bu L, R Zhang, Y Chang, J Xue, & M Han (2010). Response of photosynthetic characteristics to water stress of maize leaf in seeding. Acta Ecol. Sin. 30, 1184-1191.

Chandrakala C, SR Voleti, S Bandepa, N Sunil Kumar & PC Latha (2019). Silicate solubilization and plant growth promoting potential of Rhizobium sp. isolated from rice rhizosphere. Springer Nature B.V. 2895-2906.

Chen D, S Wang, L Yin, & X Deng (2018). How does silicon mediate plant water uptake and loss under water deficiency. Front. Plant Sci.9, 281.

Chen W, L Long, H Lin-Yan, W Qi, & S Xia-Fang (2016). Distinct Mineral Weathering Behaviors of the Novel Mineral Weathering Strain Rhizobium yantingense H66 and Rhizobium etli CFN42. Appl Environ Microbiol.82, 4090-4099

Diedrich T, A Dybowska, J Schott, E Valsami-Jones & EH Oelkers (2012). The dissolution rates of SiO2 nanoparticle as a function of particle size. Enviro. Sci. Technol. 46(9), 4909-4915.

Earle S (2019). Physical Geology 2nd Edition. British Columbia. BC Campus.

Etesami H & BR Jeong (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881–896.

Fernandez R & JF Reynolds (2000). Potential growth and drought tolerance of eight desert grasses: lack of a trade off? Oecologia. 123, 90-98.

Fertoz (2020). Silica: An Important Nutrient for Soil Health, Crop Production and Stress Mitigation. https://www.fertoz.com/silica-an-important-nutrient-for-soil-health-crop-production-and-stress-mitigation/Franzlubbers AJ (1999). Microbial activity in response to water-filled pore space of variably erodes southern piedmont soil. Appl. Soil Ecol. 11 (1), 91-101.

Gharineh MH & A Karmollachaab (2013). Effect of silicon on physiological characteristics wheat growth under water-deficit stress induced by PEG. Int J Plant Prod 4(7), 1543–1548.

Haryono (2014). Kebijakan Kementerian Pertanian Dalam Mengembangkan Sistem Pembangunan Pertanian Yang Inklusif Untuk Memajukan Petani Lahan Suboptimal. Dalam Pros Seminar Nasional Lahan Suboptimal. Palembang 26–27 September 2014.

Hu L, CC Xu, J Wang, DQ Chen, RS Zeng, YY Song & DM Chen (2019). Application of bryophyte rhizoid-associated bacteria increase silicon accumulation and growth in maize (Zea mays L.) seedlings. Applied ecology and environmental research 17(6), 13423-13433

Lee KE, A Adhikari, SM Kang, YH You, GJ Joo, JH Kim, SJ Kim & IJ Lee (2019). Isolation and characterization of the high silicate and phosphate solubilizing novel strain Enterobacter ludwigii GAK2 that promotes growth in rice plants. Agronomy 9, 144.

Luyckx M, JF Hausman, S Lutts, G Guerriero. (2017). Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant Sci. 8, 411.

Malhotra CCH, R Kapoor, & D Ganjewala (2016). Alleviation of abiotic and biotic stress in plants by silicon supplementation. Scientia 13, 59-73.

Marchin R, A Ossola, M Leishman & DS Ellsworth (2020). A simple method for simulating drought effect on plants. Front. Plant Sci. 10:1715.

Martin KR (2013). Silicon: The health benefits of metalloid. In Interrelation between essential metal ions and human disease; Sigel A, H Sigel, RKO Sigel., Eds.; Metal ion in life science; Springer: Dordrecht, The Netherlands. vol. 13, pp. 451-473. ISBN 978-94-007-7499-5.

Meena VD, ML Dotaniya, V Coumar, S Rajendiran, Ajay, S Kundu & AS Rao (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 84, 505–518.

Poorter H, F Fiorani, M Stitt, U Schurr, A Finck, Y Gibon, et al (2012). Theart of growing plants for experimental purposes: a practical guide for the plant biologist. Funct. Plant Biol. 39 (11), 821–838.

Rao GB & P Susmitha (2017). Silicon uptake, transportation, and accumulation in rice. Journal of Pharmacognosy and Phytochemistry 6 (6), 290-293.

Santi LP & DH Goenadi (2017). Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85(2), 95-104.

Smith DM & SJ Allen (1996). Measurement of sap flow in plant stems. J. Exp. Bot. 47, 1833-1844.

Snow MD & DT Tingey (1985). Evaluation of a system for the imposition of plant water stress. Plant Physiol. 77 (3), 602–607.

Tubana BS & JR Heckman (2015). Chapter 2: Silicon in soil and plant. In FA Rodrigues, LE Datnoff (eds.). Silicon and Plant Diseases. Springer, Switzerland.

Uddin J, R Smith, N Hancock & J Foley (2014). Evaluation of sap flow sensors to measure the transpiration rate of plants during canopy wetting and drying. J. Agric. Stud. 2(2), 205-119.

Vasanthi N, LM Saleena & SA Raj (2016). Silica solubilization of certain bacterial species in the presence of different silicate minerals. Int J Curr Res. 5(2), 406-408.

Vogel E, MG Donat, LV Alexander, M Meinshausen, DK Ray et al (2019). The effect of climate extreme on global agricultural yields. Environ. Res. Lett. 14:054010.

Wang RR, Q Wang, LY He, G Qiu, & F Sheng (2015). Isolation and the interaction between a minerall-weathering Rhizobium tropicii Q34 and silicate mineral. J. Microbiol Biotechnol

Wang X, C Zhao, C Muller, C Wang, P Ciais, I Janssens et al (2020). Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908-916.

Yuvakkumar R, V Elango, V Rajendran, NS Kannan, & P Prabu. (2011). Influence of nano-silica powder on the growth of maize crop (Zea mays L). Int. J. Green Nanotechnol. 3(3), 180-190.




DOI: http://dx.doi.org/10.22302/iribb.jur.mp.v90i1.493

Article Metrics

Abstract view : 125 times
71-80 PDF - 57 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 E-Journal Menara Perkebunan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CALL FOR PAPERS:

Menara Perkebunan as a communication media for research in Plantation sector opens opportunities for researchers and academics to write:
- original research results, technology development, or review of biotechnology and bioindustry and its application in agriculture, health and environment as well as other aspects of biotechnology.



MENARA PERKEBUNAN Indexed by:
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ADDRESS:

INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY
PT. RISET PERKEBUNAN NUSANTARA
Jl. Taman Kencana No. 1, Bogor 16128. Telp. 0251-8324048/8327449. Fax. 0251-8328516
E-mail : menaraperkebunanppbbi@gmail.com http://mp.iribb.org