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Abstract 

Hydrolyzed palm kernel oil and red palm 

super olein blend (HPRB) is a novel product with 

potential benefits for digestive health. This blend 

combines the antimicrobial properties of 

hydrolyzed palm kernel oil (PKO) with the 

antioxidant effects of red palm super olein 

(RPSO). However, the long-term stability of 

HPRB under different storage conditions is 

crucial to ensure its efficacy and safety. This 

study aims to evaluate the storage stability of 

HPRB in its oil form and as a soft-gel capsule. 

The research investigated the impact of various 

storage conditions on the phytonutrient content, 

fatty acid composition, and acylglycerol profile of 

HPRB. The results showed that cool and dark 

storage conditions is the best preserve for the 

phytonutrient content of HPRB. The fatty acid 

and acylglycerol compositions of HPRB remained 

stable regardless of the storage conditions. 

Accelerated stability testing of HPRB soft-gel 

capsules demonstrated excellent stability across 

various parameters, including physical 

characteristics, microbiological quality, and 

chemical stability.  Shelf-life estimation indicated 

a relatively long shelf life for the soft-gel capsules 

under accelerated conditions. These results 

suggest that HPRB, particularly when stored 

appropriately or encapsulated in soft-gel form, 

has the potential for long-term stability and safe 

use. 

[Keywords: Digestive health, monolaurin, 

phytonutrient, shelf life] 

Introduction 

Digestive health is a critical aspect of overall 

well-being, and the search for natural solutions to 

address digestive problems continues to gain 

momentum. Hydrolyzed palm kernel oil and red 

palm super olein blend (HPRB) is a novel product 

designed to address these concerns. This unique 

blend combines the therapeutic properties of 

hydrolyzed palm kernel oil (PKO) with the 

nutritional benefits of red palm super olein 

(RPSO), offering a promising approach to 

digestive health. 

Hydrolyzed PKO is abundant in medium-

chain fatty acids (MCFAs), notably lauric acid. 

Lauric acid is a precursor to monolaurin, a 

monoglyceride with potent antimicrobial 

properties. Monolaurin’s effectiveness against 

various pathogens, including bacteria, viruses, 

and fungi, has been well-documented (Peedikayil 

et al., 2015; Seleem et al., 2018; Krislee et al., 

2019; Barberis et al., 2021; Zhang et al., 2022). 

Its mechanism of action involves compromising 

the lipid bilayer of microbial cell membranes, 

resulting in cellular lysis (Ngatirah et al., 2022). 

This makes monolaurin a promising natural 

antimicrobial agent with potential applications in 

various fields, including food preservation and 

healthcare. 

RPSO demonstrates a significant presence of 

carotenoids, especially β-carotene, and vitamin E, 

which act as potent antioxidants that defend cells 

against the damaging effects of reactive oxygen 

species (ROS), which cause oxidative stress 

(Fiedor & Burda, 2014; Zeng et al., 2020). 

Oxidative stress is implicated in various digestive 

disorders, such as inflammatory bowel disease 

(IBD) and irritable bowel syndrome (IBS) (Tian 

et al., 2017; Yuksel et al., 2017; Balmus et al., 

2020; Chaturvedi et al., 2020). RPSO may 

promote a healthier digestive system by 

mitigating oxidative stress. 

The combination of hydrolyzed PKO and 

RPSO in HPRB offers a synergistic approach to 

digestive health. The antimicrobial properties of 

monolaurin, coupled with antioxidant effects of 

carotenoids and vitamin E, may help to maintain a 

healthy gut microbiome and reduce inflammation. 

However, the long-term stability of HPRB, 

particularly under various storage conditions, is 

crucial to ensure its efficacy and safety. 
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This study aims to assess the storage 

stability of HPRB in both its oil form and 

within soft-gel capsules. By investigating the 

effects of various storage conditions on 

HPRB’s phytonutrient content, fatty acid 

composition, and acylglycerol profile, we aim 

to identify optimal storage conditions to 

preserve its quality and potency. The results of 

this study will offer significant information 

regarding the potential of HPRB as a long-term 

digestive health solution. 

Materials & Methods 

Materials 

HPRB samples were provided by the 

Oleofood Laboratory at the Indonesian Oil 

Palm Research Institute (IOPRI) in Medan. 

HPRB was produced by blending hydrolyzed 

PKO and RPSO in certain ratio. Specifically, 

the hydrolyzed PKO was obtained via 

enzymatic hydrolysis utilizing Novozym 435 

(Novozymes, Denmark). Two HPRB formulas 

were assessed in this study: HPRB-1 (60:40 

ratio of hydrolyzed PKO to RPSO) and HPRB-

2 (80:20 ratio of hydrolyzed PKO to RPSO). 

Halal certified gelatin was obtained from a 

local supplier in Medan and used for HPRB 

encapsulation. Analytical grade (≥99% purity) 

chemicals were purchased from Merck 

(Germany). 

Storage conditions and sampling 

HPRB was stored in non-light-proof bottles 

under three different conditions: 

A. Dark, room temperature: Bottles kept in a 

dark room at 25-28 °C. 

B. Dark, cool temperature: Bottles kept in a 

dark room at 15-17 °C. 

C. Sunlight exposure: Bottles were exposed to 

sunlight, placed indoors near a window 

receiving direct sunlight during daylight 

hours (approximately 06:00 to 18:30), with 

an average temperature of 31-35 °C. 

Twenty-four bottles were used for each 

storage condition. Samples were collected 

weekly for       24 weeks.  At each sampling 

point, one bottle was randomly selected from 

each storage condition. The collected samples 

were analyzed for carotene and vitamin E 

content, fatty acid composition, and 

acylglycerol composition. 

Encapsulation of HPRB 

HPRB soft-gel capsules were prepared using 

a rotary die encapsulation process. The shell 

formulation consisted of gelatin (3 kg), glycerol    

(1 kg), and water (3 L). Potassium sorbate (1% 

w/w of total shell formulation) was dissolved in 

the water prior to its addition to the gelatin and 

glycerol. The ingredients were mixed at 90 °C 

for 1 hour. Subsequently, the temperature was 

reduced to 60 °C, and a vacuum was applied for 

45 minutes to deaerate the gelatin mixture.  The 

prepared shell formulation was then transferred 

to the encapsulation machine, and HPRB was 

encapsulated using a rotary die process. The 

resulting soft-gel capsules were subsequently 

dried. 

Analysis of total carotene 

Total carotene content in the HPRB sample 

was analyzed using MPOB p2.6 (2004) with   

UV-1700 spectrophotometer (Shimadzu, Japan). 

Analysis of vitamin E and its isomers 

Vitamin E and its isomers were quantified 

using an Acquity UPLC System (Waters, USA) 

in accordance with previous research (Rizki et 

al., 2022). The stationary phase was Inertsil 

ODS-3 column and the mobile phase was 

methanol-Lichrosolv at a flow rate of 1 mL.min-

1. 

Analysis of fatty acid composition 

The fatty acid composition of the samples 

was determined using Nexis GC-2030 

(Shimadzu, Japan), following AOCS Ce 1a-13 

method with minor modifications as described 

below. The GC system included a flame 

ionization detector (FID), an Agilent DB-23 

column, and a Shimadzu AOC- 30i auto-injector.  

Nitrogen was used as the carrier gas at 1 mL.min-

1. Samples were introduced via a 1:50 split 

injection. The detector and injector temperatures 

were set at 260 °C. The temperature program 

began at 90 °C (hold time: 5 min), followed by a 

ramp of 7 °C.min-1 to 208 °C (hold time: 5 min). 

Analysis of acylglycerol composition 

Acylglycerol composition was analyzed 

using GC-2010 (Shimadzu, Japan) with FID. A 

nitrogen mobile phase and Agilent DB-5HT 

column were used. Prior to analysis, samples 

were silylated with N –methyl – N – 

(trimethylsilyl)trifluoroacetamide (MSTFA). The 

injector was set at 325 °C, and oven temperature 

was set as follows: 100 °C (hold time: 1 min), 30 

°C.min-1 to 223 °C, 1 °C.min-1 to         227 °C, 

and 5 °C.min-1 to 360 °C (hold time:          10 

min). 

Accelerated stability test of HPRB soft-gel 

capsules 

To assess the stability of HPRB-1 and HPRB-

2 soft-gel capsules, an accelerated stability test 

was conducted. Capsules were stored in plastic 

bottles with plastic caps at 40±2 °C and 75±5% 

relative humidity for six months. This test was 

designed to simulate the climatic conditions of 

Indonesia (zone IV, hot and humid). This 

procedure aligned with the ASEAN Guideline on 
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Stability Study of Drug Product and the WHO 

Technical Report Series No. 863. Furthermore, 

the study adhered to principles outlined in the 

ICH Q1A (R2) Guideline on Stability Testing of 

New Drug Substances and Products, specifically 

addressing the requirements for stability data in 

climatic zones III and IV, as detailed in annex 

Q1F.  Samples were collected at three time points: 

initial (month 0), month 3, and month 6. 

Each sample underwent a series of physical, 

microbiological, and chemical analyses. Physical 

analyses included assessments of organoleptic 

properties (color, shape), disintegration time, and 

weight uniformity. Microbiological tests included 

total plate count, yeast and mold count, and tests 

for the presence of Pseudomonas aeruginosa, 

Salmonella typhi, Staphylococcus aureus, and 

Escherichia coli. Chemical analyses were 

performed to determine moisture content and 

potassium sorbate content using LC-20 AD 

(Shimadzu, Japan). 

Results and Discussion 

Phytonutrient content of HPRB during storage 

Carotenoids and vitamin E in HPRB are 

sensitive to temperature and light, making it 

crucial to understand their degradation patterns 

during storage. Figure 1 illustrates the changes in 

carotene concentration in HPRB under different 

storage conditions. As the figure shows, cool (15-

17 °C) and dark storage (condition B) maintain 

carotene stability. In contrast, HPRB stored in a 

dark room at room temperature (condition A) 

exhibited up to a 50% reduction in carotene 

concentration from its initial value after 24 weeks. 

This degradation highlights the impact of 

increasing storage temperature on carotene 

stability. The most significant carotene 

degradation was observed in HPRB stored in 

open space exposed to sunlight (condition C). In 

addition to the effect of increased temperatures, 

UV rays from the sun contribute to carotene 

degradation through two possible mechanisms: 

(1) photochemical reactions causing isomerization 

and producing epoxides, apocarotenones, and 

apocarotenals; and (2) UV photo-oxidation 

facilitated by the presence of oxygen in the 

packaging bottle (Song et al., 2018; Atencio et al., 

2022; Semitsoglou-Tsiapou et al., 2022; Šeregelj 

et al., 2022). 

In general, the changes in vitamin E 

concentration during storage followed a similar 

trend to the changes observed in carotene (Figure 

2). The rate of vitamin E degradation was slower 

in the dark and cool storage method (B) compared 

to the dark storage method at room temperature 

(A). However, the degradation rate of vitamin E 

was quite extreme in storage method C. HPRB-1 

and HPRB-2 stored in open space and exposed to 

sunlight lost all vitamin E within a short period   

(17 weeks for HPRB-1 and 7 weeks for HPRB-2). 

A closer look reveals that tocopherols are 

more susceptible to degradation than tocotrienols. 

Unlike tocopherols, tocotrienols have three 

double bonds in their isoprenoid side chain, a cha-

racteristic that contributes to their increased 

oxidative stability (Shahidi & De Camargo, 

2016). Among the tocotrienol isomers present in 

HPRB, delta-tocotrienol showed the best stability 

during storage, while alpha-tocotrienol showed 

the opposite performance. 

 

  
Figure 1. Changes in carotene content of HPRB-1 (left) and HPRB-2 (right) during storage under different conditions:     

(A) dark room at room temperature, (B) dark room at 15-17°C, and (C) open space exposed to sunlight 
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Figure 2. Changes in vitamin E isomers concentration of HPRB-1 (left) and HPRB-2 (right) during storage under 
different conditions: (A) dark room at room temperature, (B) dark room at 15-17°C, and (C) open space 

exposed to sunlight. 

Changes in macro-structural components of 

HPRB during storage 

The stability study also examined the macro-

structural components of HPRB, specifically fatty 

acid and acylglycerol profile. Table 1 shows that 

HPRB's fatty acid composition includes medium-

chain fatty acids (MCFA) from PKO and long-

chain fatty acids (LCFA) from RPSO. The 

stability tests revealed no substantial alterations in 

the fatty acid profile for either HPRB-1 or HPRB-

2 during storage (Figure 3). 

Table 2 shows that the MCFA in HPRB, 

originating from PKO, are predominantly found 

as monoacylglycerols (MAG) and diacylglycerols 

(DAG) e.g. 1-monolaurin (La--) and 1,3-dilaurin 

(La-La). Conversely, the LCFA derived from 

RPSO are mainly present as triacylglycerol 

(TAG) and free fatty acids (FFA), e.g. 1,3-

dipalmitoyl-2-oleoylglycerol (POP), 1,2-dioleoyl-

3-palmitoylglycerol (POO), and palmitic acid. 

This acylglycerol composition leads to instability 

in TAGs and FFAs, while MAGs and DAGs 

demonstrate good stability during storage. This 

can be seen in Figure 4, FFAs and TAGs show an 

up-and-down trend over 24 weeks of storage, 

while MAGs and DAGs show better stability. 

This stability is influenced by the saturation and 

length of the fatty acid chains. Shorter, saturated 

chains are generally more stable than longer, 

unsaturated chains. Furthermore, the acylglycerol 

stability in HPRB was not affected by the storage 

condition. It can be seen in Figure 4 that graphs of 

storage condition A, B, and C are approximately 

overlapped with each other. 
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Table 1. Fatty acid composition of HPRB-1 and HPRB-2a 

Fatty acid composition (%) HPRB-1 HPRB-2 

C6:0 0.13± 0.00 0.18± 0.01 

C8:0 1.84±0.01 2.43±0.01 

C10:0 1.75±0.00 2.39±0.01 

C12:0 27.59±0.09 37.96±0.16 

C14:0 9.43±0.02 12.82±0.03 

C16:0 20.31±0.04 14.51±0.08 

C16:1 0.07±0.00 0.04±0.00 

C18:0 3.13±0.03 2.72±0.01 

C18:1 27.42±0.05 22.68±0.04 

C18:2 5.86±0.02 3.85±0.03 

C18:3 0.12±0.00 0.06±0.00 

C20:0 0.22±0.01 0.17±0.00 

C20:1 0.09±0.01 0.08±0.00 

ΣSFA 73.17±0.20 64.41±0.32 

ΣMUFA 22.80±0.39 29.58±0.63 

ΣPUFA 3.91±0.44 5.98±0.65 
aMean±standard deviation (n=3). 

SFA=saturated fatty acid, MUFA=monounsaturated fatty acid, PUFA=polyunsaturated fatty acid 

  

  

  

Figure 3.  Changes in fatty acid composition of HPRB-1 (left) and HPRB-2 (right) during storage under different 
conditions: (A) dark room at room temperature, (B) dark room at 15-17°C, and (C) open space exposed to 

sunlight 
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Figure 4.  Changes in acylglycerol composition of HPRB-1 (left) and HPRB-2 (right) during storage under different 

conditions: (A) dark room at room temperature, (B) dark room at 15-17°C, and (C) open space exposed to 

sunlight. FFA=free fatty acid, MAG=monoacylglycerol, DAG=diacylglycerol, TAG=triacylglycerol 
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Table 2. Acylglycerol composition of HPRB-1 and HPRB-2a 

Acylglycerol speciesb HPRB-1 HPRB-2 

FFA P 6.75 ± 0.27 6.11 ± 0.30 

O 1.52 ± 0.14 3.11 ± 0.06 

S 1.36 ± 0.09 ND 

Total 9.63 ± 0.20 9.21 ± 0.36 

MAG -Ca- ND 0.53 ± 0.06 

Ca-- ND 2.20 ± 0.59 

-La- 1.76 ± 0.39 2.30 ± 0.10 

La-- 17.54 ± 0.72 24.69 ± 1.10 

-M- ND 0.52 ± 0.03 

M-- 3.61 ± 0.14 5.91 ± 0.12 

P-- 1.10 ± 0.07 2.67 ± 0.24 

O-- 4.70 ± 0.23 5.43 ± 1.18 

S-- 0.58 ± 0.03 0.68 ± 0.16 

Total 30.18 ± 1.57 44.93 ± 3.09 

DAG La-Cp ND 1.27 ± 1.27 

La-Ca 0.99 ± 0.05 1.75 ± 0.13 

LaLa- 2.75 ± 0.13 3.93 ± 0.01 

La-La 6.81 ± 0.01 8.90 ± 0.41 

LaM- 1.05 ± 0.01 1.78 ± 0.20 

La-M 2.33 ± 0.16 3.20 ± 0.61 

La-P 1.77 ± 0.01 2.46 ± 0.32 

LaO- 0.71 ± 0.07 1.12 ± 0.10 

Total 16.39 ± 0.43 24.40 ± 1.94 

TAG LaLaCp 2.18 ± 0.00 2.78 ± 0.02 

LaLaLa 2.10 ± 0.30 2.57 ± 0.75 

LaLaM 1.78 ± 0.35 1.83 ± 0.01 

LaLaP 0.65 ± 0.01 1.07 ± 0.18 

LaLaO 0.64 ± 0.02 0.47 ± 0.47 

LaMO ND 0.30 ± 0.30 

PPP 0.57 ± 0.20 0.26 ± 0.2 

POP 9.53 ± 0.06 3.68 ± 0.40 

POO 20.57 ± 1.77 7.90 ± 1.02 

OOO 4.89 ± 0.09 0.59 ± 0.59 

Total 43.80 ± 2.21 21.46 ± 0.78 
aMean±standard deviation (n=3). 
bSome acylglycerols might be undetected due to limit of detection. 

Cp=caprylate (C8:0), Ca=caprate (C10:0), La=laurate (C12:0), M=myristate (C14:0), P=palmitate (C16:0), O=oleate (C18:1), S=stearate 

(C18:0), ND=not detected 

Accelerated stability test of HPRB soft-gel 

capsules 

Accelerated stability test of HPRB-1 and 

HPRB-2 soft-gel capsules demonstrated excellent 

stability across various parameters (Table 3 and 

Table 4). Both formulations maintained their 

physical characteristics throughout the six-month 

study period, as evidenced by the consistent shape 

and color of the soft-gels. While a slight increase 

in disintegration time was observed over time for 

both HPRB-1 and HPRB-2, the values remained 

within acceptable limits. This indicates that 

despite slight changes, the soft-gel shells still 

disintegrated efficiently enough to release the 

active ingredients within the expected timeframe. 

The weight uniformity of both HPRB-1 and 

HPRB-2 capsules remained consistent, ensuring 

accurate dosage throughout the shelf life. 

The microbiological quality of both 

formulations remained high, with consistently 

zero total plate counts and yeast and mold counts. 

This result indicates the absence of microbial 

proliferation that could compromise the safety 

and effectiveness of the product. Remarkably, 

tests for specific pathogenic bacteria, including P. 

aeruginosa, S. typhi, S. aureus, and E. coli, were 

negative for both HPRB-1 and HPRB-2, 

confirming the absence of harmful contaminants. 

These findings collectively indicate that 

HPRB-1 and HPRB-2 soft-gel capsules possess 

robust stability profiles under accelerated storage 

conditions. The consistent physical 

characteristics, along with the absence of 

microbial growth and pathogenic bacteria, support 

their potential for long-term storage and safe use.
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Table 3. Accelerated stability test result of HPRB-1 soft-gel capsules 

No Parameter Unit 
Test result 

Product specification 
Month 0 Month 3 Month 6 

Physical characteristics 

1 Shape - soft-gel 

capsule 

soft-gel 

capsule 

soft-gel 

capsule 

soft-gel capsule 

2 Color - orange orange orange orange 

3 Disintegration time minutes 

seconds 

05’54” 08’05” 09’54” ≤60’ 

4 Weight uniformity g 0.4830 0.4827 0.4760 0.4347 – 0.5313 

Microbiological quality 

1 Total plate count colony.g-1 0 0 0 ≤105 

2 Yeast and mold 

count 

colony.g-1 0 0 0 ≤103 

3 Pseudomonas 

aeruginosa  

colony.g-1 negative negative negative negative 

4 Salmonella typhi colony.g-1 negative negative negative negative 

5 Staphylococcus 

aureus 
colony.g-1 negative negative negative negative 

6 Escherichia coli colony.g-1 0 0 0 ≤10 

Chemical stability 

1 Moisture content % 1.18 1.43 1.53 <10 

2 Potassium sorbate 

content 

% 0.0997 0.0992 0.0981 0.10 

 

Table 4. Accelerated stability test result of HPRB-2 soft-gel capsules 

No Parameter Unit 
Test result 

Product specification 
Month 0 Month 3 Month 6 

Physical characteristics 

1 Shape - soft-gel 

capsule 

soft-gel 

capsule 

soft-gel 

capsule 
soft-gel capsule 

2 Color - orange orange orange orange 

3 Disintegration time minutes 

seconds 

05’35” 06’48” 07’35” ≤60’ 

4 Weight uniformity g 0.4859 0.4801 0.4803 0.4347 – 0.5313 

Microbiological quality 

1 Total plate count colony.g-1 0 0 0 ≤105 

2 Yeast and mold 

count 
colony.g-1 0 0 0 ≤103 

3 Pseudomonas 

aeruginosa  

colony.g-1 negative negative negative negative 

4 Salmonella typhi colony.g-1 negative negative negative negative 

5 Staphylococcus 

aureus 

colony.g-1 negative negative negative negative 

6 Escherichia coli colony.g-1 0 0 0 ≤10 

Chemical stability 

1 Moisture content % 1.25 1.43 1.65 <10 

2 Potassium sorbate 

content 

% 0.1007 0.0998 0.0989 0.10 
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Figure 5. First-order degradation curves for potassium sorbate and moisture content changes in HPRB-1 (top) and HPRB-

2 (bottom) soft-gel capsules under accelerated stability testing 

 
Shelf life of HPRB soft-gel capsules 

Shelf-life estimation of HPRB soft-gel 

capsules was conducted using the data of 

potassium sorbate degradation and changes in 

moisture content (Table 3 and Table 4). The data 

was plotted on a semi-logarithmic graph (time vs. 

ln C) resulting in linear equations as shown in 

Figure 5. These linear equations were then used to 

determine the rate constants (k) of a first-order 

kinetic model: 

 

The k values for potassium sorbate 

degradation were 0.0027 and 0.0030 for HPRB-1 

and HPRB-2 soft-gel capsules, respectively. 

Similarly, the k values for moisture content 

changes were 0.0433 and 0.0463 for HPRB-1 and 

HPRB-2, respectively. Shelf life was 

subsequently calculated using these k values and 

a 90% expiration limit (i.e., allowing for 10% 

degradation of potassium sorbate or a 10% 

change in moisture content) (Park et al., 2018; 

Maia et al., 2021; González-González et al., 

2023). 

Analysis revealed an estimated shelf life of     

38 months based on potassium sorbate 

degradation and 46 months based on moisture 

content changes for HPRB-1.  For HPRB-2, the 

estimated shelf life was 37 months and 43 

months, respectively. These findings suggest a 

relatively long shelf life for HPRB soft-gel 

capsules under accelerated conditions, indicating 

potential stability for long-term storage under 

normal conditions. 

Conclusion 

Hydrolyzed palm kernel oil and red palm 

super olein blend (HPRB) stored under cool and 

dark conditions maintained good stability of 

phytonutrients, fatty acids, and acylglycerols. 

Accelerated stability test of HPRB soft-gel 

capsules demonstrated excellent stability across 

various parameters, including physical 

characteristics, microbiological quality, and 

chemical stability. HPRB-1 soft-gel capsules 

could remain stable for approximately 38 to 46 

months, while HPRB-2 capsules were projected 

to maintain their quality for roughly 37 to 43 

months, based on potassium sorbate degradation 

or moisture content as the determining factor. The 

results suggest that HPRB, particularly when 

stored appropriately or encapsulated in soft-gel 

form, has the potential for long-term stability and 

safe use. 
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