Pengaruh tiga jenis formula teknologi Sucrosin terhadap pertumbuhan dan produktivitas tebu (Saccharum officinarum L.)


  • Muhammad Abdul Aziz Pusat Penelitian Kelapa Sawit Unit Bogor
  • Ciptadi Ahmad Yusup Pusat Penelitian Kelapa Sawit Unit Bogor
  • Siswanto Siswanto Pusat Penelitian Kelapa Sawit Unit Bogor
  • Djoko Santoso Pusat Penelitian Kelapa Sawit Unit Bogor
  • Priyono Priyono Pusat Penelitian Kelapa Sawit Unit Bogor
  • Happy Widiastuti Pusat Penelitian Kelapa Sawit Unit Bogor



hasil panen, pertumbuhan, reformulasi, tebu, Teknologi Sucrosin


Sucrosin technology, have been tested in ​​more than 10,000 ha of sugarcane planting area, resulted in highly variable increases in productivity. However, fulfilling standard operational procedures when implemented on a wide scale is complicated, so it needs to be simplified regarding product formulation and application techniques. This study aimed to evaluate the three different formulas of Sucrosin technology in increasing sugarcane growth and productivity. The study was conducted on PC sugarcane at RNI Plantation, Majalengka, West Java, using the Bululawang 1303 variety. The research design was a completely randomized design with four treatments consisting of Sucrosin technology existing (Se), formula 1 (S1), and formula 2 (S2) and control. The application of formula 2 Sucrosin technology (S2) could significantly increase the height and diameter of sugarcane stalks at 6 and 9 MAP. Sugarcane production in Se, S1, and S2 treatments increased by 22.49% (112.71 ton ha-1), 20.47% (110.85 ton ha-1), and 16.45% (107.15 ton ha-1) compared to controls (92.02 ton ha-1), respectively. These results show that Sucrosin Se technology produces the highest production. Nevertheless, from a technical perspective for implementation in the field, the most straightforward Sucrosin technology is S2. However, further research needs to be conducted in the broader area across different agro-ecologies to confirm the current findings.


Download data is not yet available.


Almaroai YA, & MA Eissa (2020). Role of marine algae extracts in water stress resistance of onion under semiarid conditions. J. Soil Sci. Plant Nutr. 20, 1092–1101. DOI: 10.1007/s42729-020-00195-0.

Amanah DM & SM Putra (2018). Pengaruh biostimulan terhadap toleransi kekeringan dan pertumbuhan tanaman tebu varietas Kidang Kencana di rumah kaca. Menara Perkebunan, 86(1): 46-55. DOI: 10.22302/

Balai Penelitian Tanah. 2005. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Bogor: Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.

Diwen C, W Zhou, J Yang, J Ao, Y Huang, D Shen, Y Jiang, Z Huang, & H Shen (2021). Effects of Seaweed Extracts on the Growth, Physiological Activity, Cane Yield and Sucrose Content of Sugarcane in China. Frontiers in Plant Science, 12, 1-12. DOI: 10.3389/fpls.2021.659130.

Gomathi R, S Kohila, & K Ramachandiran (2017). Evaluating the Effect of Seaweed Formulations on the Quality and Yield of Sugarcane. Madras Agric. J., 104 (4-6): 161-165. DOI: 10.29321/MAJ.04.000423.

Karthikeyan K, & M Shanmugam (2017). The effect of potassium-rich biostimulant from seaweed Kappaphycus alvarezii on yield and quality of cane and cane juice of sugarcane var. Co 86032 under plantation and ratoon crops. J Appl Phycol, 2017. DOI: 10.1007/s10811-017-1211-6.

Kumalawati Z, Kafrawi, Mulyani S, Nur I, Bestari D, Budiarti R & Amin AR (2021). Effect of sucrosin bio stimulant on early growth of sugarcane (Saccharum officinarum L.) var. CM 2012. IOP Conf. Ser.: Earth Environ. Sci. 807 042019. 2021 p, 1-7. DOI: 10.1088/1755-1315/807/4/042019.

Mondal D, A Gosh, K Prasad, S Singh, N Bhatt, ST Zodape, JP Chaudhary, J Chaudhari, PB Chaterjee, A Seth, & PK Gosh (2015). Elimination of gibberellins from Kappaphycus alvarezii seaweed sap foliar spray enhances corn stover production without compromising the grain yield advantage. Plant Growth Regul, 75: 657–666. DOI: 10.1007/s10725-014-9967-z.

Nardi S, D Pizzeghello, M Schiavon, & A Ertani (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric, 73:18–23. DOI: 10.1590/0103-9016-2015-0006.

Putra SM, P Susanti, DM Amanah, BK Umahati, SJ Pardali & D Santoso (2017). Pengaruh biostimulan terhadap pertumbuhan vegetatif tanaman tebu varietas PSJT-941. Menara Perkebunan, 85(1): 37-43: DOI: 10.22302/

Santi LP, DH Goenadi, J Barus & A Dariah (2018). Pengaruh bio-nano silika terhadap hasil dan efisiensi penggunaan air kedelai hitam di lahan kering masam. Jurnal Tanah dan Iklim, 20(1): 43-52, DOI: 10.2017/JTI.V42I1.9156.

Silva SFD, FL Olivares, & LP Canellas (2017). The biostimulant manufactured using diazotrophic endophytic bacteria and humates is effective to increase sugarcane yield. Chemical and Biological Technologies in Agriculture, 4:24. DOI: 10.1186/s40538-017-0106-8.

Wahyuni S, HS Habibullah, SM Putra, DM Amanah, Siswanto, Priyono, D Santoso & SJ Pardal (2018). Biostimulasi pertumbuhan vegetatif tanaman tebu (Saccharum officinarum L.) pada fase awal di lahan kering. Menara Perkebunan, 86(2), 91-95. DOI: 10.22302/

Yusup CA, D Purwantoro, H Widiastuti, Siswanto, D Santoso & Priyono (2021). Respons tanaman tebu (Saccharum officinarum L.) terhadap aplikasi konsorsium biostimulan di tiga tipologi lahan. Menara Perkebunan, 89(2), 100-114. DOI: 10.22302/







25-10-2023 — Updated on 26-10-2023


How to Cite

Aziz, M. A., Yusup, C. A., Siswanto, S., Santoso, D., Priyono, P., & Widiastuti, H. (2023). Pengaruh tiga jenis formula teknologi Sucrosin terhadap pertumbuhan dan produktivitas tebu (Saccharum officinarum L.) . Menara Perkebunan, 91(2). (Original work published October 25, 2023)

Most read articles by the same author(s)

1 2 3 4 5 6 > >>