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Abstract

Sugarcane (Saccharum officinarum L.) is a vital
plantation crop, serving as a raw material for various
industries, including sugar, bioethanol, amino acids,
and food ingredients. Therefore, the advancement of
technologies aimed at increasing productivity and
fertilization efficiency in sugarcane cultivation has
become a priority. Bio-silicic acid (BioSilAc) is a
technology that can optimize the cultivation process.
This study evaluated the effectiveness of water and
fertilizer usage in plant cane (PC) and ratoon cane
(RC) during low rainfall by applying BioSilAc and
its impact on sugarcane productivity. This research
utilized a randomized block design with three
treatments (P1: 100% NPK; P2: 100% NPK +
BioSilAc; and P3: 75% NPK + BioSilAc) replicated
three times. Observed variables included soil and
leaf nutrient levels, sugarcane growth, and
productivity. Daily and potential water consumption
was measured in real-time using a sap flow meter to
calculate water use efficiency for P1 (control) and
P2, representing the BioSilAc application. The P3
treatment (75% NPK + BioSilAc) demonstrated the
highest effectiveness in terms of fertilization
efficiency and productivity, resulting in notable
increases in crop yield and crystal sugar. The PC
category saw increases of 13.5% and 12.4%, while
the RC category experienced gains of 22.82% and
25.81%, respectively. Furthermore, water use
efficiency was recorded at 22.55% for the PC
category and 13.72% for the RC category. Our
findings suggest that the application of BioSilAc not
only increase the productivity of sugarcane but also
improves both fertilizer and water use efficiency.
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Introduction

Sugarcane (Saccharum officinarum L.) is a
crucial plantation commodity that significantly
affects food security in Indonesia. It serves as a
primary industrial raw material for products such as
sugar, acetic acid, amino acids, and various food
ingredients. Additionally, bagasse, a by-product of
sugarcane processing, is utilized for energy
cogeneration, bioethanol production, animal feed,
and organic mulch (Santos-Cividanes Terezinha et
al., 2022). Through Presidential Regulation No. 40
of 2023, the Indonesian government aims to achieve
sugar self-sufficiency by 2030 to meet consumption,
industry, and bioethanol demands. However, this
goal poses significant challenges, particularly since
nearly 90% of sugarcane plantations are located in
Java and Lampung, which also focus on other
seasonal crops. Rapid land use changes occur,
especially in Java, where conversion to residential
and industrial areas is prevalent. To meet the self-
sufficiency target, efforts must focus on optimizing
land cultivation and improving productivity.

Sugarcane yield and productivity are
substantially influenced by climate conditions (Zhao
& Li, 2015; Toharisman & Triantarti, 2016). The
critical climate factors include rainfall and
evaporation rates. Changes in the length of the dry
season due to climate change can affect sugarcane
growth and limit both biomass production and sugar
yield (Jaiphong et al., 2016; Liu et al., 2016;
Marchiori et al., 2017; Khonghintaisong et al., 2018
). Water scarcity can induce oxidative stress in
plants, damaging physiological processes (Teixeira
et al., 2022) and reducing nutrient-use efficiency
(Hoang et al., 2019). Declines in sugarcane
productivity in various regions due to drought can
impede the advancement of sugarcane cultivation,
particularly in tropical areas. Consequently, there is
a pressing need for technological innovations to
optimize land resources, support high sugarcane
productivity, and mitigate the impacts of climate
change
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One effective strategy for reducing the harmful
effects of water deficiency on sugarcane is the
application of silica. Silica has been widely reported
to be beneficial as an element for plants, especially
its ability to induce wvarious stress mitigation
mechanisms (Luyckx et al., 2017; Etasama & Jeong,
2018; Verma et al., 2020; Ali et al., 2020; Verma et
al., 2021). Sugarcane is known to absorb more
silicon (Si) than any other nutrient, requiring an
average of 200-500 kg of Si per hectare over a 12-
month planting period, which is higher than its
absorption of nitrogen (N) and potassium (K)
(Camargo et al.,, 2010). Under drought stress
conditions, the uptake of Si by sugarcane plants can
increase the relative water content in their tissues
(Camargo et al., 2019; Bezerra et al., 2019; Verma
et al., 2019; Teixeira et al., 2020) and reduce
oxidative stress by minimizing electrolyte leakage in
cells (Bezerra et al., 2019). This improvement leads
to greater photosystem Il quantum efficiency,
resulting in increased dry biomass production
(Camargo et al., 2017; Verma et al., 2019; Teixeira
et al., 2020). Plants primarily absorb Si as mono-
silicic acid (H4SiO4) (Sahebi et al., 2015). BioSilAc
is a bio-silicic acid fertilizer developed by
Indonesian Oil Palm Research Institute (IOPRI)
researchers. It combines Si-solubilizing
microorganisms and nanotechnology (Santi &
Goenadi, 2017). Applying BioSilAc to oil palm and
soybeans has yielded positive results (Amanah et al.,
2019; Santi et al., 2019). However, the impact of
BioSilAc on sugarcane plants in the plant cane (PC)
and ratoon cane (RC) categories has not been
extensively studied. Therefore, this study aims to
evaluate the effects of BioSilAc application in
enhancing the productivity and efficiency of water
and nutrient use in both PC and RC sugarcane.

Material and Methods
Location and experimental design

The research on the application of BioSilAc was
conducted at the Jengkol Sugar Research Center in
Kediri, East Java (PTPN I Regional 1V Sub-Holding
Supporting Co), on sugarcane varieties PS 881 in the
plant cane (PC) and ratoon cane (RC) categories.
The planting process took place on dry land regosol
soil types from June 2023 to June 2024. The initial
chemical characteristics for the experimental plots
were as follows: pH 6.76; organic carbon (C) 1.27%;
cation exchange capacity (CEC) 3.17 cmol*/kg; total
silicon (SiOz) 28.69%; available Si 133 ppm;
nitrogen (N) 0.19%; phosphorus pentoxide (P205)
0.08%; and potassium oxide (K20) 0.023%.

A randomized block design (RBD) was used to
test three fertilization treatments with three
replications in a plot area of 1,000 m? for each
treatment plot. Treatment parameters consist of: (P1)

recommended dose of 100% NPK as a control; (P2)
100% NPK + 250 BioSilAc tablets / Ha; and (P3)
75% NPK + 250 BioSilAc tablets / Ha, 250 BioSilAc
tablets weigh a total of 1000 grams. They contain 17-
20% silica (SiOz) and 5% of available silica in the
form of mono silicic acid. The recommended dosage
per hectare for 100% NPK is as follows: ZA 500 kg;
NPK 400 kg; SP 36 100 kg; and KCI 100 kg. The
BioSilAc application is conducted twice in each
planting season, specifically at 1 and 3 months after
planting/ratoon (MAP/MAR). Each application
process involves diluting 125 BioSilAc tablets in
250 liters of water and then spraying them onto the
plants and root areas. The maintenance of the
sugarcane follows standard agricultural practices,
which include controlling weeds, pests, and diseases
throughout the trial period.

Observation and data analysis

Plant growth was monitored through
measurements of plant height, number of stems, and
stem diameter. Harvest data were also collected for
each treatment. The analysis of soil nutrient
parameters, including silicon content in both the soil
and plant tissue, was measured using the standard
4500-Si02 D Heteropoly blue method (Eaton et al.,
2017). A standard solution of Si 1000 ppm (Merck
132244) was used for comparison. Silica forms a
blue complex with molybdate, while oxalic acid
eliminates unwanted molybdate bonds, such as
phosphate.

Water use efficiency refers to the optimal
utilization of water resources for the growth and
development of plants. To measure sap flow in the
xylem, the heat ratio method (Holttd et al., 2015) was
utilized with a sap flow meter (SFM1) from ICT
International. This instrument features three needles
that generate heat pulses (the middle needle) and is
equipped with a sensitive thermocouple. For the
measurement, sap flow was introduced into the stem
approximately 10 cm above the ground surface.
Real-time measurements were taken at 30-minute
intervals over a period of seven days at 9
MAP/MAR. Silica is a beneficial element that
supports plants under stress, making dry conditions
particularly suitable for SAP Flow meter
observations, especially during the critical period
when sugar cane requires substantial water (4-9
months).

Result and Discussion

Effect of biosilac application on sugarcane growth
and productivity

Sugarcane requires a high level of mineral
nutrients for optimal crop production (Verma et al.,
2020; Zeng et al., 2015). As a C4 plant, sugarcane
depends on carbon metabolism, but its various
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growth stages are vulnerable to drought stress. Such
water deficit conditions significantly affect nutrient
uptake, leading to disturbances in the plant's
morphological and physiological characteristics
(Verma et al., 2021; Bodner et al., 2015; Boaretto et
al., 2014). The biomass extraction process during
sugarcane harvest tends to deplete available silica in
the soil, despite its critical role in mitigating drought
stress and enhancing nutrient uptake in sugarcane,
particularly under stressed conditions (Pascual et al.,
2016; Xu et al., 2015). Soil analysis following the
application of BioSilAc indicated an increase in
available silicon, reaching levels between 2.91 to
3.40% for PC and 2.98 to 3.08% for RC. Available
silica in the soil before treatment is 133 ppm
(0.013%). There was a slight increase in organic
matter and cation exchange capacity (CEC)
compared to pre-application conditions, which
suggests improved soil fertility and greater stability
in soil structure (Table 1).

The vegetative growth of sugarcane 9 months
after planting for primary cultivation (PC) and 9
months after ratooning for ratoon cultivation (RC) is

Table 1. Soil characteristics 9 months after BioSilAc application

depicted in Figure 1. The data shows that the
provision of BioSilAc (P2-P3) tends to increase the
vegetative growth of plants compared to P1 (100 %
NPK recommendation), especially in the number of
stems and plant height. The P3 treatment increased
the number of stems and plant height in the PC
category. While in the RC category, P2 gave better
results. Meanwhile, there was no difference between
the control and treatment in terms of stem diameter.
These findings suggest that using NPK fertilizer at a
dose 25% lower than the standard, in conjunction
with BioSilAc, can achieve plant physical conditions
comparable to the control group receiving the full
100% NPK dosage (refer to Figure 1). This aligns
with research by Makarim et al. (2007) and Kristanto
(2018), which demonstrated that applying silica to
plants can strengthen and enhance the stability of
root membranes, thereby optimizing nutrient
absorption. Additional studies indicate that silica
promotes denser root development and increases cell
wall extensibility in the growth zone (Frew et al.,
2018; Coskun et al., 2019; Hattori et al., 2003;

Block E15 (PC) Block E14 (RC) Unit
Analysis Parameters
P1 P2 P3 P1 P2 P3
pH 7.53 6.53 6.97 6.75 6.88 6.46 -
Organic carbon 2.13 1.72 2.25 1.87 1.96 2.67 %
N 0.1 0.08 0.08 0.09 0.12 0.08 %
P20s 0.14 0.17 0.14 0.16 0.17 0.14 %
K20 0.019 0.018 0.014 0.047 0.065 0.032 %
total SiO2 21.35 36.63 24.56 30.42 35.50 31.45 %
Available SiO2 0.89 3.40 291 1.92 3.08 2.98 %
CEC 4.29 3.70 4.80 5.81 6.31 5.77 cmol*/kg
MgO 0.039 0.021 0.021 0.092 0.087 0.09 ppm
CaO 0.028 0.029 0.016 0.043 0.051 0.044 ppm
10.0 - 3.3 1
9.0 4 = 3.0 1
S g0 - % = = 27
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Figure 1. Number of stem (left), plant height (middle), and stem diameter (right) of sugar cane at 9 (nine) MAP/MAR
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Vermaetal., 2021). Consequently, sugarcane treated
with BioSilAc as a source of mono-silicic acid
(H4SiO4) exhibited superior growth compared to the
control, due to optimized water and nutrient
absorption capabilities. Silica also significantly
increases plant height and sugarcane biomass
(Puspitasari & Yuliatun, 2023).

The application of BioSilAc resulted in increased
silica content in sugarcane leaves, with notable
enhancements in both the PC and RC categories
compared to the control (Figure 2). In the PC
category, the silica content in sugarcane leaves
increases from 1.82 to 2.41% SiO; for P2 and 2.22%
SiO, for P3 (about 22-32%) due to the BioSilAc
application. Similarly, in the RC category, the silica
content increased from 1.76 to 2.17% SiO; for P2,
while for P3, the silica content increased to 2.27%
SiO; (about 23- 29%). Sugarcane actively absorbs
available silicon from the soil through its roots. This
process begins in the root cortex and continues to the
stele, where silicon is then transported through the
xylem to the stem and leaves. As plants mature,
silicon concentrations increase due to water
evaporation during transpiration, leading to the
accumulation of amorphous silicon (Si02-nH20),

2.5 A1 I

1.5 1

Si0, (%)

commonly referred to as phytoliths (Ma & Yamaji,
2006; Chandler-Ezell et al., 2006). This silicon
accumulation  contributes to plant  rigidity,
strengthening their tissues against pathogen
infection (Ali et al., 2020; Chen et al., 2018). Higher
leaf water status correlates with physical changes
due to the deposition of amorphous silica, which
binds cellulose in the leaf epidermis and beneath the
cuticle (Mitani-Ueno & Ma, 2021) and is influenced
by water uptake, transport, and loss through
transpiration (Shi et al., 2016; Wang et al., 2015).
Complexation  of silica with cell wall
macromolecules occurs through sugar stabilization,
resembling the borate-mediated Formosan reaction
(Guerriero et al., 2016). The silica layer on leaves
also plays an important role in maintaining the
photosynthetic capacity of plants (Verma et al.,
2021; Verma et al., 2019; Frew et al., 2018). Silica
can increase stomatal density and development
through differential expression of proteins related to
hormones, oxidation-reduction processes, and
defense responses (Soundararajan et al., 2017; Rios
et al., 2017). Optimum photosynthesis activity and
nutrient absorption correlate with sugar cane
productivity and the concentration of dissolved sugar
produced.

PC

mP1

Treatment
P2 mP3

RC

Figure 2. Silica content in sugarcane leaf from BioSilAc experiment

Table 2. Productivity and sugar crystal after harvest

Treatment

Productivity (Ton/Ha)

Sugar crystal (Ton/ha)

PC

100% NPK (P1)

100% NPK + 250 BioSilac tablet/ha

75% NPK + 250 BioSilac tablet/ha

CV (%)

RC

100% fertilizer dosage

100% fertilizer dosage + 250 BioSilac tablet/ha
75% fertilizer dosage + 250 BioSilac tablet /ha
CV (%)

117.70 b 832 a

11913 b 875 a

13359 a 935 a
2.8 58

56.846 a 395 b

69.710 a 5465 a

69.818 a 4977 ab
6.5 6.9

) Means in the same column followed by the same letter(s) are not significantly different according to Duncan’smultiple range test at o =

0.05
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Figure 3. Sugarcane total water requirement in one hectare per day

Productivity and sugar cane crystal production in
the PC category exhibited the most significant
increase in the P3 treatment (NPK dose of 75%
combined with 250 BioSilAc tablets/Ha). This
treatment was statistically higher than the control,
with an increase in productivity and sugar crystal
(Hablur) of 13.50% and 12.38%, respectively,
compared to the control (see Table 2). There were
also increases in harvest productivity plots P2 and P3
in the RC category relative to the control (P1),
although these differences were not statistically
significant. However, the sugar crystals produced in
the RC category were statistically higher than in the
control. The most notable improvements in the RC
category also occurred in the P3 treatment, resulting
in increases in both productivity and sugar crystals
of 22.82% and 25.81%. These findings suggest that
applying BioSilAc enables a 25% reduction in
fertilizer usage while boosting productivity and
sugar crystal content. In PTPN | Regional IV
plantation, the sugarcane variety PS 881 exhibits an
average productivity of 88.8 tons per hectare, with a
sugar crystal productivity averaging 7.40 tons per
hectare. The results derived from recent
experimental studies indicate that the application of
BioSilAc has the potential to significantly optimize
these productivity metrics, thereby enhancing both
the productivity and quality of this particular
sugarcane variety. These findings underscore the
importance of innovative agricultural practices in
improving sugarcane cultivation outcomes.

The impact of biosilac application on water
consumption in sugarcane

Water use efficiency (WUE) can be defined as
the ratio of biomass accumulation to water supplied
through irrigation and rainfall conditions (Natarajan
etal., 2020). In addition, WUE can also be expressed
in terms of intrinsic transpiration efficiency and the
relationship between photosynthesis and stomatal
conductance (Condon et al., 2002; Natarajan et al.,

2020). Peak water use occurs between 10:00 AM and
1:00 PM, and Sap Flow meters allow for real-time
monitoring of sap flow movements. Sap flow
patterns reflect transpiration patterns (Uddin et al.,
2014), making these readings valuable for analyzing
plant transpiration trends. Transpiration is closely
related to plant water status, which is regulated by
stomatal opening and driven by leaf transpiration.
Notably, sugarcane treated with BioSilAc showed
lower water consumption than the control group in
both the PC and RC categories. Generally, the PC
category requires more water than the RC category
because sugarcane plants have higher water
requirements during shoot initiation (tilling phase)
and stem elongation phase (Ferreira et al., 2017;
Reyes et al., 2021). Water use efficiency was
recorded at 22.55% for PC and 14% for RC
compared to the control (Figure 3). The WUE value
in PC, which is greater than RC, is positively
correlated with the productivity obtained, and this is
in line with studies reporting that WUE can increase
photosynthetic ~ activity and productivity in
sugarcane plants (De Silva et al, 2013;
Khonghintaisong et al., 2024)

Conclusion

The application of bio-silicic acid through the
BioSilAc product effectively enhances the dissolved
silica content in both soil and sugarcane plant tissues
(leaves). The most effective treatment identified in
this experiment was P3, which consisted of 75%
NPK combined with 250 BioSilAc tablets per
hectare for both the PC and RC categories. This
combination resulted in productivity and sugar
crystal increases of 13.50% and 12.38%,
respectively for PC, while RC showed increases of
22.82% and 25.81%, respectively. Additionally, the
use of BioSilAc significantly improved water use
efficiency in sugarcane plants, achieving increases
of 22.55% for PC and 14% for RC. This experiment
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demonstrates that BioSilAc not only boosts the
productivity of PS 881 variety sugarcane plants and
enhances water use efficiency but also allows for a
reduction in NPK fertilizer usage by 25% compared
to the standard dosage.
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