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Abstract

Nutrient-use efficiency in oil palm is important
for economic and environmental reasons. This
research aimed to identify biomarkers to
discriminate between tolerant and susceptible oil
palms to potassium (K) and nitrogen (N) deficiency.
A screening of oil palm materials for N or K use
efficiency was conducted using an omission trial
experiment, where only targeted nutrient was
applied as treatment, while all other nutrients were
applied as recommended. The treatment was
performed in the main nursery for ten months to
identify progenies with contrasting traits. Metabolite
analysis was performed to identify specific
metabolites as biomarkers for N-efficient and K-
efficient palms. Samples taken from the roots of the
contrasting progenies were treated with liquid
nitrogen prior to grinding into a powder for liquid
chromatography-high resolution mass spectrometry
(LC-HRMS) analysis. The LC-HRMS analysis
showed 277 metabolites from K and N treatments
after data trimming, which were then analysed in
MetaboAnalyst 6.0 for biomarker identification. The
results showed that some metabolites were
statistically significant. Metabolites identified in
more than one analysis have a higher likelihood of
being considered as biomarkers. In this experiment,
we compared PLS-DA, sPLS-DA, and Random
Forest. However, some identified metabolites were
not to occur naturally in the treatment palms. Some
amino acids and antioxidants were promising
biomarkers to differentiate the N-deficiency-tolerant
and K-deficiency-tolerant palms. Thus, the
biomarkers facilitate the breeding scheme to create
a nutrient-efficient palm planting material.
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Introduction

Fertilizer application is crucial for oil palm
productivity. Fertilizer application costs up to 60%
of the total oil palm maintenance costs. If the
fertilizer is not applied correctly, plant production
can significantly fall. However, not all fertilizers
applied will be absorbed by the plants because most
of them will be lost due to leaching, runoff, and
evaporation. Nitrogen (N) and potassium (K) are
two main nutrients that are significant issues in oil
palm  fertilizer application. In  Indonesia,
approximately 90% of the fields showed K
deficiency, while N and phosphorus (P) deficiencies
were observed in about 50% and 66% of the fields,
respectively (Lim et al., 2023). A nutrient-efficient
oil palm would help to avoid economic inefficiency
and pollution caused by fertilizer losses. To do so,
robust biomarkers are necessary to identify palms
with tolerance to nutrient stress from susceptible
palms. Therefore, a metabolomic approach is a
promising tool for finding biomarkers. Liquid
chromatography high-resolution mass spectrometry
(LC-HRMY) is ideal for compound discovery and
metabolite identification with high throughput and
high-quality data. It can identify unknown low
molecular compounds (less than 200 Da) even if
they are not in the reference library (Wallace &
McCord, 2020).

Plants that are deficient in nutrients tend to
accumulate secondary metabolites as a form of a
defence mechanism. The metabolites produced by
plants vary in type and concentration depending on
the species and condition of the plant. These
metabolites can be indicators of nutrient status and
stress in plants. The use of GC-MS to create
metabolite profiles in plants stressed by N, P, and K
nutrients has been carried out by Sung et al. (2015)
on tomatoes. Shen et al. (2019) reported that under
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the N stress, rice tended to accumulate metabolites
involved in four primary metabolic pathways:
sucrose, phenylalanine, amino acid, and
tricarboxylic acid cycle metabolism. Meanwhile,
Ganie et al. (2020) found that under the N stress, the
accumulation of lipid content in the maize root
increases due to lipid utilization as an alternate
energy source. The primary and secondary
metabolites of stress plants have been profiled by
Sung et al. (2015), while Kim et al. (2018) profiled
primary metabolites, glucose, and sucrose in paprika
under N, P, and K scarcity. Putrescine is a commonly
used marker for K-deficient plants (Cui et al., 2019).
In addition to indicating K deficiency, putrescine is
also found in plants stressed by drought and plants
stressed by waterlogging (Cui et al., 2020). This
suggests a potential relationship between the
concentrations of putrescine, spermine, and
spermidine and the intensity and type of stress that
the plant faces.

Combining various omics approaches has
recently proven beneficial in cutting the oil palm
breeding cycle and enabling precision breeding. The
trend is shifting towards multiomics-assisted
breeding. Combining multiple omics approaches in
studying oil palm resistance to diseases caused by
abiotic stress. Metabolomic and metagenomic
factors may interact in a specific way to establish a
defence mechanism against stress. Wening et al.
(2024) reported that the microbiome in the planting
media of K-efficient oil palm seedlings was similar
to that in seedlings with sufficient K. Microbial
interactions and environmental conditions, such as
temperature, humidity, and certain nutrient status,
can influence plant resistance to disease or stress. In
stressed conditions, microbes such as plant growth-
promoting rhizobacteria can produce specific
compounds such as phytohormones and antioxidants
and even degrade unnecessary compounds (Inbaraj,
2021). On the other hand, the release of certain
compounds by microbes can be interpreted as
signals that are perceived by plant receptors to
activate and build a defence system (Capek et al.,
2018). Based on this concept, the experiment was
designed to find specific metabolites to identity N
and K use efficiency in oil palms.

Materials and Methods

Palm materials used in this research were DxP
saplings at the age of fourteen months after planting.
The saplings were derived from a cross between
Dura Deli and African Pisiferas. The nursery
experiments employed omission trials where only N
or K was applied as a treated dose. Deficiency was
created by applying the N dose, 50% of the
recommended dose, while other fertilizers (K, P, and
dolomite) were applied as recommended. The

sametreatment was applied for K deficiency, where
only K was applied at 50% of the recommended dose,
while N, P, and dolomite were applied at the

recommended dose. The contrasting progenies were
assessed based on a previous experiment
(Pangaribuan et al, 2024). The tolerance and
susceptibility to the treatment were determined
based on morphological and nutrient efficiency
parameters. The samples used in this analysis were
oil palm seedling roots that were subjected to N and
K deficiency for ten months post-transplanting. The
transplanting was carried out for three-month-old
seedlings in the pre-nursery. Root samples were kept
fresh by wrapping them in aluminium foil and
soaking them in liquid N until they were sent for
further analysis. Samples were shipped via
expedited service in dry ice to maintain the condition
of the samples.

Metabolite profiling was performed by Corpora
Science® using LC-HRMS. As much as 50 mg of
each root sample was dissolved in 1 mL of HPLC-
grade methanol and vortexed for 1 minute.
Sonication was carried out for 30 minutes and
continued with centrifugation at 1400 g for 5
minutes. The supernatant formed from this series of
processes was filtered using a 0.2 uM nylon filter to
be injected into the LC-HRMS instrument. Quality
control (QC) was performed by taking 5 mg of each
sample and combining them. From the collection of
each sample, 60 mg of raw sample was taken as a
QC pool. For injection purposes, 5 uL of the sample
was used. LC analysis was performed using a
Thermo Scientific™ Vanquish™ Horizon UHPLC
with Binary Pump (Germering, Germany) and a
Thermo Scientific™ Accucore™ Phenyl Hexyl
column, 100 mm length x 2.1 mm ID x 2.6 pm
particle size (Lithuania). Liquid chromatography
was performed using MS-grade water with 0.1%
formic acid and MS-grade acetonitrile with 0.1%
formic acid as the mobile phase with a flow rate of
0.3 mL/min for a total of 25 minutes at a column
temperature of 40 °C. HRMS analysis used a
Thermo Scientific™ Orbitrap™ Exploris 240
HRMS (Bremen, Germany) with acquisition mode:
full MS/dd-MS2. In this analysis, positive and
negative polarities were used alternately. Mass
spectral separation was performed with full MS
resolution at 60,000 FWHM with scan range 70-
1000 m/z and nN as collision gas. Compound
identification was performed using Thermo
Scientific Compound Discoverer 3.3 (San Jose,
USA) with mzCloud library. The databases used
were  Arita 6549 Flavonoid Database
(https://jglobal.jst.go.jp), Lipid Maps
(https://lipidmaps.org), NP Atlas (Poynton et al.,
2024), Chemspider Database (http://chemspider.com),
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BioCyc (https://www.biocyc.org), CheBI (http://
github.com/ebi-chebi/ChEBI), CheMBL (https:/
www.ebi.ac.uk/chembl/), ChemMine (http://chem
mine. ucr.edu), Food and Agriculture of the United
Nations (www.fao.org), FoodDB (https://foodb.ca),
KEGG (https://www.genome.jp> kegg), Nature
Chemical Biology (https://nature.com/nchembio),
Nature Chemistry (https://nature.com/nchem) and
Nature Communications (https://www.nature.com/
ncomms). Biomarker identification was performed
using Metaboanalyst 6.0 (https://www.metabo
analyst.ca/). Sample normalization was assessed by
sum, while data scaling used mean centring. The
normalised data was then analysed using PLS-DA
and sPLSDA. Potential biomarker metabolites were
identified  using  significant  analysis  of
metabolomics (SAM).

Result and Discussion

Metabolite data obtained from LC-HRMS
Orbitrap (Thermofisher™) analysis were filtered by
removing metabolites that only appeared in one
sample. This was done to avoid false positives that
might arise from unbalanced samples. Sometimes,
data normalisation that is too strict can eliminate
potential data; conversely, normalisation that is too
loose can produce false positive information. The
normalised data were then analysed using PLS-DA
and sPLSDA. Potential biomarker metabolites were
identified  using  significant  analysis  of
metabolomics (SAM). PLS-DA analysis showed
that the samples were distributed widely and tended
to be clustered based on treatment and response to
treatment. 13% of the wvariation in metabolite
concentration produced by oil palm roots subjected

Component 1 - "o| a o

13%

Component 2
1

Component 3

‘I campanent &
0%

4 + A 4
A b, £ . . onat Component5 | .
st + o |+ . I

oK S BN ETE 0TV

to N and K stress can be explained by PC1 and 11%
by PC2. Score plot analysis using sPLS-DA showed
a distribution of samples that were separated
according to treatment and did not overlap. This
shows that the metabolites produced by plant roots
differ in concentration according to the treatment
given and the plant's tolerance to treatment (Figure
1).

LC-HRMS  analysis  produced  350-490
metabolites from 12 samples. These metabolites
were trimmed based on spectral data checked in
CFM-ID, the chemical compounds verified in
PubChem, the presence in the samples, and their
natural existence in the plants. After trimming, 277
metabolites were suitable to be processed in samples
tolerant and susceptible to K and N stress. In all of
the samples processed, there were variations in the
level of regulation against N and K stress. These
metabolites showed significant upregulation or
downregulation under N and K stress conditions
based on fold-change metabolome analysis (Table 1).
Metabolites that were significantly increased or
decreased only under certain conditions have the
potential to be biomarkers. Further analysis using
SAM showed that 13 metabolites met the SAM
criteria (Table 2). Although the number of
metabolites indicated in SAM was less than in FC
analysis, it does not mean that all metabolites in
SAM were included in FC. Several metabolites
stated to be very significant in SAM were not found
in the Table 1. This situation could happen because
the two methods use different algorithms. Several
general analysis models were combined to
determine which metabolites could be used as
markers (Xia et al., 2009).
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Figure 1. a) Partial least squares discriminant analysis (PLS-DA); b) 2D scores loading plot.
Legends: TK: Tolerant to K deficiency at 50% recommended dose; TN: Tolerant to N deficiency at 50%
recommended dose; SK: Susceptible to K deficiency at 50% recommended dose; SN: Susceptible to N deficiency

at 50% recommended dose.
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Table 1. Oil palm root metabolites fold-change under K and N stress

K stress N stress
Rlta g FC  10g2(FC) Regulated  FC  10g2(FC) Regulated

(+/-)9,10-dihydroxy-12Z-octadecenoic acid 0.37 -1.44 Down 0.36 -1.49 Down
(2S)-2-Isopropyl-3-oxosuccinate 0.40 -1.31 Down 0.32 -1.66 Down
(9Z)-2-Chloro-2-hydroxy-9-octadecenoic acid 0.02 -5.89 Down na na
(R)-3-Amino-2-methylpropanoate 9.63 3.27 UP na na
(R)-Lactaldehyde na na 231 1.21 Up
1,26-Hexacosanediol 0.01 -6.90 Down na na
1,2-Dinonylnaphthalene na na 0.15 -2.69 Down
10_16-Dihydroxyhexadecanoicacid 2.47 1.30 UP na na
10-oxo-nonadecanoic acid na na 3.17 1.67 Up
13(S)-HOTTE 0.28 -1.84 Down na na
15-Anilinoretinal 2.16 1.11 UP na na
1-Aminocyclopropane-1-carboxylate na na 2.94 1.56 Up
1-Tridecanamine 0.02 -5.34 Down 0.44 -1.20 Down
2-(Acetamidomethylene)succinate 0.04 -4.75 Down na na
2,5-Bis(tert-butylperoxy)-2,5-dimethylhexane 2.05 1.04 UP na na
22alpha-Hydroxy-campest-4-en-3-one 0.41 -1.29 Down na na
2-Cyano-3-hydroxy-3-thioxopropanoic acid 32.17 5.01 UP 0.01 -6.18 Down
2-Furoylglycine;Pyromucuricacid 3.07 1.62 UP na na
3,5,7-Octatriyn-1-ol na na 49.17 5.62 Up
3-Dehydroxycarnitine 0.49 -1.03 Down 2.55 1.35 Up
3'-hydroxyacetophenone;3-ACETYLPHENOL 4.22 2.08 UP na na
4-Guanidinobutanal na na 3.32 1.73 Up
4-Hydroxybenzaldehyde na na 53.93 5.75 Up
4-Oxoproline na na 6.54 2.71 Up
5-O-Caffeoylshikimicacid 0.26 -1.95 Down 3.51 1.81 Up
6,8-Pentacosanediol 0.47 -1.10 Down na na
6-Methylquinoline 2.38 1.25 UP 0.48 -1.07 Down
7-Hydroxycoumarine 0.02 -5.87 Down na na

Acetophenone 0.30 -1.72 Down na na
Anadanthoside na na 2.76 1.46 Up
Asparagine na na 2.51 1.33 Up
Bacillamidin G 0.03 -5.06 Down na na

Bolekolic acid 0.39 -1.36 Down na na
Carboselenoatoiron(1+) 0.14 -2.83 Down na na
Certonardosterol I na na 0.40 -1.34 Down
Cissoic acid 0.48 -1.07 Down na na

Citric acid 0.50 -1.00 Down na na

cyclic phosphatidic acid na na 0.23 -2.14 Down
Cyclooctene 2.77 1.47 UP na na

D-Glutamate 0.30 -1.74 Down 0.29 -1.77 Down
Diffusoside C 2.93 1.55 UP 0.15 -2.70 Down
Dihomo-Linolenoyl Ethanolamide na na 0.02 -6.02 Down
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K stress N stress
Metabolites FC  10g2(FC) Regulated FC  10g2(FC) Regulated
Dihydrocapsaicin 0.03 -5.29 Down 0.29 -1.77 Down
Diosmetin 3.15 1.65 UP 3.56 1.83 Up
Disulochrin na na 2.74 1.45 Up
DL-Arginine na na 2.64 1.40 Up
D-Pipecolicacid 0.40 -1.31 Down na na
Ergosta-4,6,8(14),22E-tetraen-3-one na na 2.55 1.35 Up
Eriodictyol na na 0.45 -1.15 Down
Ethyl 3,3-diethoxypropanoate 39.57 5.31 UP na na
FADH2 5.55 247 UP na na
Furfural;Furan-2-carbaldehyde 6.29 2.65 UP na na
Ggamma-L-Glutamyl-L-glutamicacid na na 0.01 -6.39 Down
Heptylic acid 0.01 -6.66 Down 0.41 -1.27 Down
Isocordoin 61.72 5.95 UP na na
Isostearamidopropyl dimethylamine 3.67 1.88 UP na na
Itaconic acid na na 0.49 -1.03 Down
Kasarin na na 13.82 3.79 Up
Lauroyl diethanolamide 4.01 2.00 UP na na
leucyl-4-hydroxyproline 2.49 1.32 UP na na
L-Norleucine na na 2.94 1.56 Up
Luteolin na na 2.26 1.18 Up
Maleamate 3087.4 11.59 UP 3.13 1.65 Up
Malyngic acid na na 0.37 -1.43 Down
Massarilactone D 0.07 -3.89 Down 0.06 -3.94 Down
Mebutamate 0.07 -3.89 Down na na
Medelamine A na na 0.019 -5.68
METHOXYMETHYLMELAMINE na na 2.26 1.17 Up
Mycinonic acid IIT na na 0.01 -6.33 Down
N-(2-Phenylethyl)-isobutyramide na na 0.35 -1.50 Down
N, N-dimethyl-Safingol 0.005 -7.4621 Down 2.64 1.40 Up
Nitromethanetriol na na 0.001 -9.89 Down
NP-016129 na na 3.9405 1.98 Up
Octadecanamine na na 2.0729 1.05 Up
Pantheric Acid C 3.24 1.69 UP 0.49 -1.04 Down
Penispirozine G na na 2.24 1.16 Up
Phloretin 0.26 -1.92 Down na na
PHODIA-PG na na 0.41 -1.28 Down
Phthalic anhydride na na 0.49 -1.03 Down
Pinillidine na na 2.40 1.26 Up
Resorcinomycin A 3.03 1.60 UP na na
Scymnol na na 3.11 1.66 Up
Sebacicacid na na 0.31 -1.69 Down
Sulcatone 0.43 -1.19 Down na na
Suspensolide 0.49 -1.03 Down na na
Tephcalostan C na na 0.39 -1.37 Down

Legends: FC = fold change; na = data not available.
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Table 2. Significant analysis of metabolomics (SAM)

< eeo...(Setiowati et al.)

Metabolites d.value stdev rawp g.value
Acetophenone 15.83 0.31494  0.0003615 0.036027
(18,3S)-3-Glycoloyl-3,5,12-trihydroxy-6,11-dioxo- 1 12.288 1.4308  0.0005623 0.036027
Diosmetin 11.689 0.27918  0.0006827 0.036027
DL-Arginine 9.9618 1128 0.001245 0.039418
Molybdenite 9.9329 0.46128 0.001245 0.039418
Octadecanamine 8.9961 0.17057  0.0018876 0.041614
2-Cyano-3-hydroxy-3-thioxopropanoic acid 8.8828 0.017731 0.0019679 0.041614
2-Furoylglycine;Pyromucuricacid 8.5495 0.053484 0.0021687 0.041614
22alpha-Hydroxy-campest-4-en-3-one 8.2727 2.061 0.0024498 0.041614
(S)-4-Amino-5-oxopentanoate 8.1564 0.061995 0.0026506 0.041614
Catechin 7.9408 3.3548  0.0028916 0.041614
3-Methoxy-4-hydroxyphenylethyleneglycol 7.1617 0.15718 0.0037349 0.049273
4-Oxoproline 6.7209 0.15978  0.0041767 0.050862
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Figure 2. Discriminant analysis for biomarker digging using (a) PLS-DA, (b) sPLS-DA, and (c) Random Forest

Differentiating metabolites for tolerant plants
from those susceptible to N and K stress was
identified using discriminant analysis. PCA analysis
using VIP values greater than 1 can differentiate the
parameters tested (Xu et al., 2024). However, large
omics data sets need a more stringent discriminant
analysis to confirm the PCA results and suppress
false positives. VIP PLS-DA analysis is a very
efficient method for identifying compounds that
play an important role in separating samples in PCA.
In addition to PCA, Random Forest is a robust and
powerful model (Han et al., 2016).

Discriminant analysis using PCA, sPLS-DA, and
Random Forest gave varying results (Figure 2).
PLS-DA analysis at VIP values above 1 showed
several potential compounds such as DL-arginine,
piceatannol, maleamate, anilic acid, asparagine,
choline, and 3,5,7-octatriyn-1-ol. In the sPLS-DA
analysis, potential compounds were obtained, such
as DL-arginine, molybdenite, mycolipanolic,
asparagine, catechin, and oxycarboxin. The Random

Forest analysis obtained potential compounds, such
as 3,5,7-octatriyn-1-ol, 4-oxoproline, citric acid, and
DL-arginine. Therefore, we decided on the
metabolites that appeared in more than one model as
biomarker candidates. The more frequently it
showed, the stronger its potency as a biomarker (Xia
et al., 2009).

The three models (PLS-DA, sPLS-DA, and RF)
produce different combinations of potential
compounds. However, some compounds appear
significantly as differentiators in all three models
(DL-Arginine) and compounds that appear in more
than one model (3,5,7-Octatriyn-1-ol, Citric acid,
Asparagine, Catechin). In addition, some
metabolites appear in SAM and FC analysis. The
consideration of deciding which metabolites will be
used as differentiators could be that those
metabolites are statistically significant in various
analysis methods, and that the differentiators are
naturally present in the plants.
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The analyses revealed several promising
metabolites; however, some appear challenging to
find naturally in plants, such as anilic acid,
maleamate, molybdenite, mycolipanolic, and
oxycarboxin. For instance, anilic acid is not
typically produced by plants but is synthesised
industrially as a colourant (Schmidt et al., 2007).
While maleamate can be found in some plants,
information regarding its metabolism is limited.
Wan et al. (2021) noted that maleamate is an
inhibitor or suppressor of crabgrass. Molybdenite, a
mineral, is occasionally utilised to enrich fertilizers
(Li et al., 2024). Its presence in the samples may be
attributed to fertilizers applied shortly before
sampling. Mycolipanolic is not commonly found in
plants, as it is mainly a component of bacterial cell
walls  (https://www.biocyc.org/).  Oxycarboxin,
widely used as a systemic fungicide (Sang & Lee,
2020), is also present in plants, although it is
unlikely to be present internally due to the fungicide
application. Additionally, the metabolite 3,5,7-
Octatriyn-1-ol has been documented in studies
related to bird's nest salivary (Tong et al., 2020) and
has implications for pancreatic health and insulin
(Mierzejewski et al., 2024). Anadanthoside is a
flavonoid and glycoside with antibacterial activity
(https://pubchem.ncbi.nlm.nih.gov/). It is a natural
product of a plant well known and belongs to the
genus Anadenanthera (Delices et al., 2023).

Other metabolites, such as DL-arginine,
asparagine, catechin, acetophenone, and piceatannol,
were naturally produced in plants. Acetophenone
was only downregulated in K deficiency treatment.
Meanwhile, arginine and asparagine were
unavailable in K deficiency but upregulated in N
deficiency. Catechin and piceatannol were phenol
antioxidants (Baranwal et al., 2022; Ahmadpourmir
et al., 2024; Al-Jaber et al., 2024). Antioxidants play
an important role in defence mechanisms when
plants are under stressful conditions. Arginine and
Asparagine are amino acids and part of enzymes and
proteins. Upregulated amino acids may occur from
the breakdown of proteins that produce energy.
During stress, amino acids are alternative substrates
for energy production when carbohydrates are
depleted (Heinemann & Hildebrant, 2021; Trovato
et al.,, 2021). According to this consideration,
Isocordoin and Acetophenone appeared to be
potential biomarkers for K-efficient stress. At the
same time, amino acids, oxoproline, and diosmetine
meet the qualification for N-efficient biomarkers in
oil palm seedlings. Some metabolites were not
naturally found in the oil palm seedling roots. They
might present as contamination due to the treatments.

Conclusion

The metabolites produced in the roots of oil palm
seedlings under N and K deficiency stress were
differentially regulated. Amino acids tend to be
upregulated in N-deficiency-tolerant oil palm
saplings, whereas acetophenone is downregulated in
K-deficiency-tolerant oil palm saplings.
Acetophenone and isocordoin are potential
biomarkers for K-efficient oil palm. At the same
time, oxo-proline and diosmetin are potential
biomarkers for N-efficient oil palm based on their
metabolite profile in 14-month saplings with a ten-
month K/N deprivation treatment.
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