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Abstract 

Nutrient-use efficiency in oil palm is important 

for economic and environmental reasons. This 

research aimed to identify biomarkers to 

discriminate between tolerant and susceptible oil 

palms to potassium (K) and nitrogen (N) deficiency. 

A screening of oil palm materials for N or K use 

efficiency was conducted using an omission trial 

experiment, where only targeted nutrient was 

applied as treatment, while all other nutrients were 

applied as recommended. The treatment was 

performed in the main nursery for ten months to 

identify progenies with contrasting traits. Metabolite 

analysis was performed to identify specific 

metabolites as biomarkers for N-efficient and K-

efficient palms. Samples taken from the roots of the 

contrasting progenies were treated with liquid 

nitrogen prior to grinding into a powder for liquid 

chromatography-high resolution mass spectrometry 

(LC-HRMS) analysis. The LC-HRMS analysis 

showed 277 metabolites from K and N treatments 

after data trimming, which were then analysed in 

MetaboAnalyst 6.0 for biomarker identification. The 

results showed that some metabolites were 

statistically significant. Metabolites identified in 

more than one analysis have a higher likelihood of 

being considered as biomarkers. In this experiment, 

we compared PLS-DA, sPLS-DA, and Random 

Forest. However, some identified metabolites were 

not to occur naturally in the treatment palms. Some 

amino acids and antioxidants were promising 

biomarkers to differentiate the N-deficiency-tolerant 

and K-deficiency-tolerant palms. Thus, the 

biomarkers facilitate the breeding scheme to create 

a nutrient-efficient palm planting material. 

[Keywords: Antioxidants, biomarkers, LC-HRMS, 

liquid nitrogen, nutrient-use efficiency] 

 

Introduction 

Fertilizer application is crucial for oil palm 

productivity. Fertilizer application costs up to 60% 

of the total oil palm maintenance costs. If the 

fertilizer is not applied correctly, plant production 

can significantly fall. However, not all fertilizers 

applied will be absorbed by the plants because most 

of them will be lost due to leaching, runoff, and 

evaporation. Nitrogen (N) and potassium (K) are 

two main nutrients that are significant issues in oil 

palm fertilizer application. In Indonesia, 

approximately 90% of the fields showed K 

deficiency, while N and phosphorus (P) deficiencies 

were observed in about 50% and 66% of the fields, 

respectively (Lim et al., 2023). A nutrient-efficient 

oil palm would help to avoid economic inefficiency 

and pollution caused by fertilizer losses. To do so, 

robust biomarkers are necessary to identify palms 

with tolerance to nutrient stress from susceptible 

palms. Therefore, a metabolomic approach is a 

promising tool for finding biomarkers. Liquid 

chromatography high-resolution mass spectrometry 

(LC-HRMS) is ideal for compound discovery and 

metabolite identification with high throughput and 

high-quality data. It can identify unknown low 

molecular compounds (less than 200 Da) even if 

they are not in the reference library (Wallace & 

McCord, 2020). 

Plants that are deficient in nutrients tend to 

accumulate secondary metabolites as a form of a 

defence mechanism. The metabolites produced by 

plants vary in type and concentration depending on 

the species and condition of the plant. These 

metabolites can be indicators of nutrient status and 

stress in plants. The use of GC-MS to create 

metabolite profiles in plants stressed by N, P, and K 

nutrients has been carried out by Sung et al. (2015) 

on tomatoes. Shen et al. (2019) reported that under 
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the N stress, rice tended to accumulate metabolites 

involved in four primary metabolic pathways: 

sucrose, phenylalanine, amino acid, and 

tricarboxylic acid cycle metabolism. Meanwhile, 

Ganie et al. (2020) found that under the N stress, the 

accumulation of lipid content in the maize root 

increases due to lipid utilization as an alternate 

energy source. The primary and secondary 

metabolites of stress plants have been profiled by 

Sung et al. (2015), while Kim et al. (2018) profiled 

primary metabolites, glucose, and sucrose in paprika 

under N, P, and K scarcity. Putrescine is a commonly 

used marker for K-deficient plants (Cui et al., 2019). 

In addition to indicating K deficiency, putrescine is 

also found in plants stressed by drought and plants 

stressed by waterlogging (Cui et al., 2020). This 

suggests a potential relationship between the 

concentrations of putrescine, spermine, and 

spermidine and the intensity and type of stress that 

the plant faces. 

Combining various omics approaches has 

recently proven beneficial in cutting the oil palm 

breeding cycle and enabling precision breeding. The 

trend is shifting towards multiomics-assisted 

breeding. Combining multiple omics approaches in 

studying oil palm resistance to diseases caused by 

abiotic stress. Metabolomic and metagenomic 

factors may interact in a specific way to establish a 

defence mechanism against stress.  Wening et al. 

(2024) reported that the microbiome in the planting 

media of K-efficient oil palm seedlings was similar 

to that in seedlings with sufficient K. Microbial 

interactions and environmental conditions, such as 

temperature, humidity, and certain nutrient status, 

can influence plant resistance to disease or stress. In 

stressed conditions, microbes such as plant growth-

promoting rhizobacteria can produce specific 

compounds such as phytohormones and antioxidants 

and even degrade unnecessary compounds (Inbaraj, 

2021). On the other hand, the release of certain 

compounds by microbes can be interpreted as 

signals that are perceived by plant receptors to 

activate and build a defence system (Čapek et al., 

2018). Based on this concept, the experiment was 

designed to find specific metabolites to identity N 

and K use efficiency in oil palms. 

Materials and Methods 

Palm materials used in this research were DxP 

saplings at the age of fourteen months after planting. 

The saplings were derived from a cross between 

Dura Deli and African Pisiferas. The nursery 

experiments employed omission trials where only N 

or K was applied as a treated dose. Deficiency was 

created by applying the N dose, 50% of the 

recommended dose, while other fertilizers (K, P, and 

dolomite) were applied as recommended. The 

sametreatment was applied for K deficiency, where 

only K was applied at 50% of the recommended dose, 

while N, P, and dolomite were applied at the 

recommended dose. The contrasting progenies were 

assessed based on a previous experiment 

(Pangaribuan et al., 2024). The tolerance and 

susceptibility to the treatment were determined 

based on morphological and nutrient efficiency 

parameters. The samples used in this analysis were 

oil palm seedling roots that were subjected to N and 

K deficiency for ten months post-transplanting. The 

transplanting was carried out for three-month-old 

seedlings in the pre-nursery. Root samples were kept 

fresh by wrapping them in aluminium foil and 

soaking them in liquid N until they were sent for 

further analysis. Samples were shipped via 

expedited service in dry ice to maintain the condition 

of the samples. 

Metabolite profiling was performed by Corpora 

Science® using LC-HRMS. As much as 50 mg of 

each root sample was dissolved in 1 mL of HPLC-

grade methanol and vortexed for 1 minute. 

Sonication was carried out for 30 minutes and 

continued with centrifugation at 1400 g for 5 

minutes. The supernatant formed from this series of 

processes was filtered using a 0.2 μM nylon filter to 

be injected into the LC-HRMS instrument. Quality 

control (QC) was performed by taking 5 mg of each 

sample and combining them. From the collection of 

each sample, 60 mg of raw sample was taken as a 

QC pool. For injection purposes, 5 µL of the sample 

was used. LC analysis was performed using a 

Thermo Scientific™ Vanquish™ Horizon UHPLC 

with Binary Pump (Germering, Germany) and a 

Thermo Scientific™ Accucore™ Phenyl Hexyl 

column, 100 mm length x 2.1 mm ID x 2.6 µm 

particle size (Lithuania). Liquid chromatography 

was performed using MS-grade water with 0.1% 

formic acid and MS-grade acetonitrile with 0.1% 

formic acid as the mobile phase with a flow rate of 

0.3 mL/min for a total of 25 minutes at a column 

temperature of 40 ºC. HRMS analysis used a 

Thermo Scientific™ Orbitrap™ Exploris 240 

HRMS (Bremen, Germany) with acquisition mode: 

full MS/dd-MS2. In this analysis, positive and 

negative polarities were used alternately. Mass 

spectral separation was performed with full MS 

resolution at 60,000 FWHM with scan range 70-

1000 m/z and nN as collision gas. Compound 

identification was performed using Thermo 

Scientific Compound Discoverer 3.3 (San Jose, 

USA) with mzCloud library. The   databases   used 

were Arita 6549 Flavonoid Database   

(https://jglobal.jst.go.jp), Lipid Maps 

(https://lipidmaps.org), NP Atlas (Poynton et al., 

2024), Chemspider Database (http://chemspider.com),
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BioCyc (https://www.biocyc.org), CheBI (http:// 

github.com/ebi-chebi/ChEBI), CheMBL (https:// 

www.ebi.ac.uk/chembl/), ChemMine (http://chem 

mine. ucr.edu),  Food and Agriculture of the United 

Nations (www.fao.org), FoodDB (https://foodb.ca), 

KEGG (https://www.genome.jp> kegg), Nature 

Chemical Biology (https://nature.com/nchembio), 

Nature Chemistry (https://nature.com/nchem) and 

Nature Communications (https://www.nature.com/ 

ncomms). Biomarker identification was performed 

using Metaboanalyst 6.0 (https://www.metabo 

analyst.ca/). Sample normalization was assessed by 

sum, while data scaling used mean centring. The 

normalised data was then analysed using PLS-DA 

and sPLSDA. Potential biomarker metabolites were 

identified using significant analysis of 

metabolomics (SAM). 

Result and Discussion 

Metabolite data obtained from LC-HRMS 

Orbitrap (Thermofisher™) analysis were filtered by 

removing metabolites that only appeared in one 

sample. This was done to avoid false positives that 

might arise from unbalanced samples. Sometimes, 

data normalisation that is too strict can eliminate 

potential data; conversely, normalisation that is too 

loose can produce false positive information. The 

normalised data were then analysed using PLS-DA 

and sPLSDA. Potential biomarker metabolites were 

identified using significant analysis of 

metabolomics (SAM). PLS-DA analysis showed 

that the samples were distributed widely and tended 

to be clustered based on treatment and response to 

treatment. 13% of the variation in metabolite 

concentration produced by oil palm roots subjected 

to N and K stress can be explained by PC1 and 11% 

by PC2. Score plot analysis using sPLS-DA showed 

a distribution of samples that were separated 

according to treatment and did not overlap. This 

shows that the metabolites produced by plant roots 

differ in concentration according to the treatment 

given and the plant's tolerance to treatment (Figure 

1). 

LC-HRMS analysis produced 350-490 

metabolites from 12 samples. These metabolites 

were trimmed based on spectral data checked in 

CFM-ID, the chemical compounds verified in 

PubChem, the presence in the samples, and their 

natural existence in the plants. After trimming, 277 

metabolites were suitable to be processed in samples 

tolerant and susceptible to K and N stress. In all of 

the samples processed, there were variations in the 

level of regulation against N and K stress. These 

metabolites showed significant upregulation or 

downregulation under N and K stress conditions 

based on fold-change metabolome analysis (Table 1). 

Metabolites that were significantly increased or 

decreased only under certain conditions have the 

potential to be biomarkers. Further analysis using 

SAM showed that 13 metabolites met the SAM 

criteria (Table 2).  Although the number of 

metabolites indicated in SAM was less than in FC 

analysis, it does not mean that all metabolites in 

SAM were included in FC. Several metabolites 

stated to be very significant in SAM were not found 

in the Table 1. This situation could happen because 

the two methods use different algorithms. Several 

general analysis models were combined to 

determine which metabolites could be used as 

markers (Xia et al., 2009).

 

 
Figure 1. a) Partial least squares discriminant analysis (PLS-DA); b) 2D scores loading plot. 

Legends: TK: Tolerant to K deficiency at 50% recommended dose; TN: Tolerant to N deficiency at 50% 

recommended dose; SK: Susceptible to K deficiency at 50% recommended dose; SN: Susceptible to N deficiency 

at 50% recommended dose. 

(a) (b) 
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Table 1. Oil palm root metabolites fold-change under K and N stress 

Metabolites 
K stress N stress 

FC log2(FC) Regulated FC log2(FC) Regulated 

(+/-)9,10-dihydroxy-12Z-octadecenoic acid 0.37 -1.44 Down 0.36 -1.49 Down 

(2S)-2-Isopropyl-3-oxosuccinate 0.40 -1.31 Down 0.32 -1.66 Down 

(9Z)-2-Chloro-2-hydroxy-9-octadecenoic acid 0.02 -5.89 Down na na 
 

(R)-3-Amino-2-methylpropanoate 9.63 3.27 UP na na 
 

(R)-Lactaldehyde na na 
 

2.31 1.21 Up 

1,26-Hexacosanediol 0.01 -6.90 Down na na 
 

1,2-Dinonylnaphthalene na na 
 

0.15 -2.69 Down 

10_16-Dihydroxyhexadecanoicacid 2.47 1.30 UP na na 
 

10-oxo-nonadecanoic acid na na 
 

3.17 1.67 Up 

13(S)-HOTrE 0.28 -1.84 Down na na 
 

15-Anilinoretinal 2.16 1.11 UP na na 
 

1-Aminocyclopropane-1-carboxylate na na 
 

2.94 1.56 Up 

1-Tridecanamine 0.02 -5.34 Down 0.44 -1.20 Down 

2-(Acetamidomethylene)succinate 0.04 -4.75 Down na na 
 

2,5-Bis(tert-butylperoxy)-2,5-dimethylhexane 2.05 1.04 UP na na 
 

22alpha-Hydroxy-campest-4-en-3-one 0.41 -1.29 Down na na 
 

2-Cyano-3-hydroxy-3-thioxopropanoic acid 32.17 5.01 UP 0.01 -6.18 Down 

2-Furoylglycine;Pyromucuricacid 3.07 1.62 UP na na 
 

3,5,7-Octatriyn-1-ol na na 
 

49.17 5.62 Up 

3-Dehydroxycarnitine 0.49 -1.03 Down 2.55 1.35 Up 

3'-hydroxyacetophenone;3-ACETYLPHENOL 4.22 2.08 UP na na 
 

4-Guanidinobutanal na na 
 

3.32 1.73 Up 

4-Hydroxybenzaldehyde na na 
 

53.93 5.75 Up 

4-Oxoproline na na 
 

6.54 2.71 Up 

5-O-Caffeoylshikimicacid 0.26 -1.95 Down 3.51 1.81 Up 

6,8-Pentacosanediol 0.47 -1.10 Down na na 
 

6-Methylquinoline 2.38 1.25 UP 0.48 -1.07 Down 

7-Hydroxycoumarine 0.02 -5.87 Down na na 
 

Acetophenone 0.30 -1.72 Down na na 
 

Anadanthoside na na 
 

2.76 1.46 Up 

Asparagine na na 
 

2.51 1.33 Up 

Bacillamidin G 0.03 -5.06 Down na na 
 

Bolekolic acid 0.39 -1.36 Down na na 
 

Carboselenoatoiron(1+) 0.14 -2.83 Down na na 
 

Certonardosterol I na na 
 

0.40 -1.34 Down 

Cissoic acid 0.48 -1.07 Down na na 
 

Citric acid 0.50 -1.00 Down na na 
 

cyclic phosphatidic acid na na 
 

0.23 -2.14 Down 

Cyclooctene 2.77 1.47 UP na na 
 

D-Glutamate 0.30 -1.74 Down 0.29 -1.77 Down 

Diffusoside C 2.93 1.55 UP 0.15 -2.70 Down 

Dihomo-Linolenoyl Ethanolamide na na 
 

0.02 -6.02 Down 
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Metabolites 
K stress N stress 

FC log2(FC) Regulated FC log2(FC) Regulated 

Dihydrocapsaicin 0.03 -5.29 Down 0.29 -1.77 Down 

Diosmetin 3.15 1.65 UP 3.56 1.83 Up 

Disulochrin na na 
 

2.74 1.45 Up 

DL-Arginine na na 
 

2.64 1.40 Up 

D-Pipecolicacid 0.40 -1.31 Down na na 
 

Ergosta-4,6,8(14),22E-tetraen-3-one na na 
 

2.55 1.35 Up 

Eriodictyol na na 
 

0.45 -1.15 Down 

Ethyl 3,3-diethoxypropanoate 39.57 5.31 UP na na 
 

FADH2 5.55 2.47 UP na na 
 

Furfural;Furan-2-carbaldehyde 6.29 2.65 UP na na 
 

Ggamma-L-Glutamyl-L-glutamicacid na na 
 

0.01 -6.39 Down 

Heptylic acid 0.01 -6.66 Down 0.41 -1.27 Down 

Isocordoin 61.72 5.95 UP na na 
 

Isostearamidopropyl dimethylamine 3.67 1.88 UP na na 
 

Itaconic acid na na 
 

0.49 -1.03 Down 

Kasarin na na 
 

13.82 3.79 Up 

Lauroyl diethanolamide 4.01 2.00 UP na na 
 

leucyl-4-hydroxyproline 2.49 1.32 UP na na 
 

L-Norleucine na na 
 

2.94 1.56 Up 

Luteolin na na 
 

2.26 1.18 Up 

Maleamate 3087.4 11.59 UP 3.13 1.65 Up 

Malyngic acid na na 
 

0.37 -1.43 Down 

Massarilactone D 0.07 -3.89 Down 0.06 -3.94 Down 

Mebutamate 0.07 -3.89 Down na na 
 

Medelamine A na na 
 

0.019 -5.68 
 

METHOXYMETHYLMELAMINE na na 
 

2.26 1.17 Up 

Mycinonic acid III na na 
 

0.01 -6.33 Down 

N-(2-Phenylethyl)-isobutyramide na na 
 

0.35 -1.50 Down 

N, N-dimethyl-Safingol 0.005 -7.4621 Down 2.64 1.40 Up 

Nitromethanetriol na na 
 

0.001 -9.89 Down 

NP-016129 na na 
 

3.9405 1.98 Up 

Octadecanamine na na 
 

2.0729 1.05 Up 

Pantheric Acid C 3.24 1.69 UP 0.49 -1.04 Down 

Penispirozine G na na 
 

2.24 1.16 Up 

Phloretin 0.26 -1.92 Down na na 
 

PHODiA-PG na na 
 

0.41 -1.28 Down 

Phthalic anhydride na na 
 

0.49 -1.03 Down 

Pinillidine na na 
 

2.40 1.26 Up 

Resorcinomycin A 3.03 1.60 UP na na 
 

Scymnol na na 
 

3.11 1.66 Up 

Sebacicacid na na 
 

0.31 -1.69 Down 

Sulcatone 0.43 -1.19 Down na na 
 

Suspensolide 0.49 -1.03 Down na na 
 

Tephcalostan C na na 
 

0.39 -1.37 Down 

Legends: FC = fold change; na = data not available. 
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Table 2. Significant analysis  of metabolomics (SAM)  

Metabolites            d.value             stdev        rawp       q.value 

Acetophenone 15.83 0.31494 0.0003615 0.036027 

(1S,3S)-3-Glycoloyl-3,5,12-trihydroxy-6,11-dioxo-1 12.288 1.4308 0.0005623 0.036027 

Diosmetin 11.689 0.27918 0.0006827 0.036027 

DL-Arginine 9.9618 1128 0.001245 0.039418 

Molybdenite 9.9329 0.46128 0.001245 0.039418 

Octadecanamine 8.9961 0.17057 0.0018876 0.041614 

2-Cyano-3-hydroxy-3-thioxopropanoic acid 8.8828 0.017731 0.0019679 0.041614 

2-Furoylglycine;Pyromucuricacid 8.5495 0.053484 0.0021687 0.041614 

22alpha-Hydroxy-campest-4-en-3-one 8.2727 2.061 0.0024498 0.041614 

(S)-4-Amino-5-oxopentanoate 8.1564 0.061995 0.0026506 0.041614 

Catechin 7.9408 3.3548 0.0028916 0.041614 

3-Methoxy-4-hydroxyphenylethyleneglycol 7.1617 0.15718 0.0037349 0.049273 

4-Oxoproline 6.7209 0.15978 0.0041767 0.050862 

 

 
(a) (b) (c) 

Figure 2. Discriminant analysis for biomarker digging using (a) PLS-DA, (b) sPLS-DA, and (c) Random Forest 

Differentiating metabolites for tolerant plants 

from those susceptible to N and K stress was 

identified using discriminant analysis. PCA analysis 

using VIP values greater than 1 can differentiate the 

parameters tested (Xu et al., 2024). However, large 

omics data sets need a more stringent discriminant 

analysis to confirm the PCA results and suppress 

false positives. VIP PLS-DA analysis is a very 

efficient method for identifying compounds that 

play an important role in separating samples in PCA. 

In addition to PCA, Random Forest is a robust and 

powerful model (Han et al., 2016). 

Discriminant analysis using PCA, sPLS-DA, and 

Random Forest gave varying results (Figure 2). 

PLS-DA analysis at VIP values above 1 showed 

several potential compounds such as DL-arginine, 

piceatannol, maleamate, anilic acid, asparagine, 

choline, and 3,5,7-octatriyn-1-ol. In the sPLS-DA 

analysis, potential compounds were obtained, such 

as DL-arginine, molybdenite, mycolipanolic, 

asparagine, catechin, and oxycarboxin. The Random 

Forest analysis obtained potential compounds, such 

as 3,5,7-octatriyn-1-ol, 4-oxoproline, citric acid, and 

DL-arginine. Therefore, we decided on the 

metabolites that appeared in more than one model as 

biomarker candidates. The more frequently it 

showed, the stronger its potency as a biomarker (Xia 

et al., 2009). 

The three models (PLS-DA, sPLS-DA, and RF) 

produce different combinations of potential 

compounds. However, some compounds appear 

significantly as differentiators in all three models 

(DL-Arginine) and compounds that appear in more 

than one model (3,5,7-Octatriyn-1-ol, Citric acid, 

Asparagine, Catechin). In addition, some 

metabolites appear in SAM and FC analysis. The 

consideration of deciding which metabolites will be 

used as differentiators could be that those 

metabolites are statistically significant in various 

analysis methods, and that the differentiators are 

naturally present in the plants.

 
High Low 
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The analyses revealed several promising 

metabolites; however, some appear challenging to 

find naturally in plants, such as anilic acid, 

maleamate, molybdenite, mycolipanolic, and 

oxycarboxin. For instance, anilic acid is not 

typically produced by plants but is synthesised 

industrially as a colourant (Schmidt et al., 2007). 

While maleamate can be found in some plants, 

information regarding its metabolism is limited. 

Wan et al. (2021) noted that maleamate is an 

inhibitor or suppressor of crabgrass. Molybdenite, a 

mineral, is occasionally utilised to enrich fertilizers 

(Li et al., 2024). Its presence in the samples may be 

attributed to fertilizers applied shortly before 

sampling. Mycolipanolic is not commonly found in 

plants, as it is mainly a component of bacterial cell 

walls (https://www.biocyc.org/). Oxycarboxin, 

widely used as a systemic fungicide (Sang & Lee, 

2020), is also present in plants, although it is 

unlikely to be present internally due to the fungicide 

application. Additionally, the metabolite 3,5,7-

Octatriyn-1-ol has been documented in studies 

related to bird's nest salivary (Tong et al., 2020) and 

has implications for pancreatic health and insulin 

(Mierzejewski et al., 2024). Anadanthoside is a 

flavonoid and glycoside with antibacterial activity 

(https://pubchem.ncbi.nlm.nih.gov/). It is a natural 

product of a plant well known and belongs to the 

genus Anadenanthera (Delices et al., 2023).  

Other metabolites, such as DL-arginine, 

asparagine, catechin, acetophenone, and piceatannol, 

were naturally produced in plants. Acetophenone 

was only downregulated in K deficiency treatment. 

Meanwhile, arginine and asparagine were 

unavailable in K deficiency but upregulated in N 

deficiency. Catechin and piceatannol were phenol 

antioxidants (Baranwal et al., 2022; Ahmadpourmir 

et al., 2024; Al-Jaber et al., 2024). Antioxidants play 

an important role in defence mechanisms when 

plants are under stressful conditions. Arginine and 

Asparagine are amino acids and part of enzymes and 

proteins. Upregulated amino acids may occur from 

the breakdown of proteins that produce energy. 

During stress, amino acids are alternative substrates 

for energy production when carbohydrates are 

depleted (Heinemann & Hildebrant, 2021; Trovato 

et al., 2021). According to this consideration, 

Isocordoin and Acetophenone appeared to be 

potential biomarkers for K-efficient stress. At the 

same time, amino acids, oxoproline, and diosmetine 

meet the qualification for N-efficient biomarkers in 

oil palm seedlings. Some metabolites were not 

naturally found in the oil palm seedling roots. They 

might present as contamination due to the treatments. 

 

 

Conclusion 

The metabolites produced in the roots of oil palm 

seedlings under N and K deficiency stress were 

differentially regulated. Amino acids tend to be 

upregulated in N-deficiency-tolerant oil palm 

saplings, whereas acetophenone is downregulated in 

K-deficiency-tolerant oil palm saplings. 

Acetophenone and isocordoin are potential 

biomarkers for K-efficient oil palm. At the same 

time, oxo-proline and diosmetin are potential 

biomarkers for N-efficient oil palm based on their 

metabolite profile in 14-month saplings with a ten-

month K/N deprivation treatment. 
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