Synthesis of bio-hydrocarbons pentadecane from crude palm oil (CPO) using recombinant E.coli produced fatty acid photodecarboxylase From Chlorella variabilis

Authors

  • Irma kresnawaty Indonesian Oil Palm Research Institute
  • Farhan Palgunadi Indonesia University
  • Yora Faramitha Indonesian Oil Palm Research Institute
  • Kenny Lischer Indonesia University
  • Ayu Rahayu Saraswanti Indonesian Oil Palm Research Institute
  • Fauziatul Fitriyah Indonesian Oil Palm Research Institute
  • Djoko Santoso Indonesian Oil Palm Research Institute

DOI:

https://doi.org/10.22302/iribb.jur.mp.v92i2.592

Keywords:

biocatalyst, cap, light-driven enzime, remombinant protein, renewable energy

Abstract

Exploration of natural resources, particularly fossil fuels, is necessary given the sharp rise in energy demand across a wide range of industries. The risk of unpredictable fuel costs, rising pollution, and climate change is elevated as a result of that specific event. In order to address the problem of danger originating from present conventional fuel, it is crucial to use renewable energy that is regarded as sustainable and safe. In the future, bio-hydrocarbons are one energy source that is expected to be used as fuel. In both biological and non-biological processes, biohydrocarbons—hydrocarbons originating from biomass—can be created. Employing the Chlorella variabilis Fatty Acid Photodecarboxylase (CvFAP) enzyme from E. coli recombinant is a remarkable recent technique for producing bio-hydrocarbons. This enzyme has the ability to change free fatty acids, according to extensive studies when induced by blue light and accompanied by the addition of substrates. This study has confirmed the success of producing bio-hydrocarbons in the form of pentadecane with a selectivity of 16.44%. This experiment also indicated that several substantial components are needed in the bio-hydrocarbon synthesis process to obtain an optimal result. The components are the use of TB growth media, the selection of a protein concentration of 1777.5 l ppm, activation time for 3 hours, and the preference for substrate type in the form of 50% CPO.

Downloads

Download data is not yet available.

References

Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., da Silva, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Castro, L. G., & Teodoro, D. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1). https://doi.org/10.1093/nar/gkaa1100

Bernard, A., Domergue, F., Pascal, S., Jetter, R., Renne, C., Faure, J. D., Haslam, R. P., Napier, J. A., Lessire, R., & Joubès, J. (2012). Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 24(7). https://doi.org/10.1105/tpc.112.099796

Bruder, S., Moldenhauer, E. J., Lemke, R. D., Ledesma-Amaro, R., & Kabisch, J. (2019). Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica. Biotechnology for biofuels, 12, 1-13.

Duong, H. T., Wu, Y., Sutor, A., Burek, B. O., Hollmann, F., & Bloh, J. Z. (2021). Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel. ChemSusChem, 14(4). https://doi.org/10.1002/cssc.202002957

Guo, X., Xia, A., Li, F., Huang, Y., Zhu, X., Zhang, W., Zhu, X., & Liao, Q. (2022). Photoenzymatic decarboxylation to produce renewable hydrocarbon fuels: A comparison between whole-cell and broken-cell biocatalysts. Energy Conversion and Management, 255. https://doi.org/10.1016/j.enconman.2022.115311

Huijbers, M. M. E., Zhang, W., Tonin, F., & Hollmann, F. (2018). Light-driven enzymatic decarboxylation of fatty acids. Angewandte Chemie - International Edition, 57(41). https://doi.org/10.1002/anie.201807119

Kram, K. E., & Finkel, S. E. (2015). Rich medium composition affects Escherichia coli survival, glycation, and mutation frequency during long-term batch culture. Applied and Environmental Microbiology, 81(13). https://doi.org/10.1128/AEM.00722-15

Lakavath, B., Hedison, T. M., Heyes, D. J., Shanmugam, M., Sakuma, M., Hoeven, R., Tilakaratna, V., & Scrutton, N. S. (2020). Radical-based photoinactivation of fatty acid photodecarboxylases. Analytical Biochemistry, 600. https://doi.org/10.1016/j.ab.2020.113749

Lee, S. B., & Suh, M. C. (2013). Recent advances in cuticular wax biosynthesis and its regulation in arabidopsis. Molecular Plant, 6(2). https://doi.org/10.1093/mp/sss159

Liu, K., & Li, S. (2020). Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Current Opinion in Biotechnology (62). https://doi.org/10.1016/j.copbio.2019.07.005

Ma, Y., Zhang, X., Zhang, W., Li, P., Li, Y., Hollmann, F., & Wang, Y. (2020). Photoenzymatic production of next generation biofuels from natural triglycerides combining a hydrolase and a photodecarboxylase. ChemPhotoChem, 4(1). https://doi.org/10.1002/cptc.201900205

Martina, V. R. S. A. N. S. K. A., & Vojtech, K. (2015). A comparison of Biuret, Lowry and Bradford methods for measuring the egg’s proteins. Mendel Net, 2015, 394-8.https://www.mnet.mendelu.cz/mendelnet2015/articles/62_vrsanska_1167.pdf

Naqvi, S. R., Naqvi, M., Noor, T., Hussain, A., Iqbal, N., Uemura, Y., & Nishiyama, N. (2017). Catalytic pyrolysis of Botryococcus braunii (microalgae) over layered and delaminated zeolites for aromatic hydrocarbon production. Energy Procedia, 142. https://doi.org/10.1016/j.egypro.2017.12.060

Ng, W. Z., Chan, E. S., Gourich, W., Ooi, C. W., Tey, B. T., & Song, C. P. (2023). Perspective on enzymatic production of renewable hydrocarbon fuel using algal fatty acid photodecarboxylase from Chlorella variabilis NC64A: Potentials and limitations. Renewable and Sustainable Energy Reviews, 184, 113548.https://www.sciencedirect.com/science/article/pii/S1364032123004057

Pugazhendhi, A., Anburajan, P., Park, J. H., Kumar, G., Sivagurunathan, P., & Kim, S. H. (2017). Process performance of biohydrogen production using glucose at various HRTs and assessment of microbial dynamics variation via q-PCR. International Journal of Hydrogen Energy, 42(45). https://doi.org/10.1016/j.ijhydene.2017.06.184

Santner, P., Szabó, L. K., Chanquia, S. N., Merrild, A. H., Hollmann, F., Kara, S., & Eser, B. E. (2021). Optimization and engineering of fatty acid photodecarboxylase for substrate specificity. ChemCatChem, 13(18). https://doi.org/10.1002/cctc.202100840

Simpson, R. J. (2006). SDS-PAGE of proteins. Cold Spring Harbor Protocols, 2006(1), pdb-prot4313. https://cshprotocols.cshlp.org/content/2006/1/pdb.prot4313.citation

Sorigué, D., Légeret, B., Cuiné, S., Blangy, S., Moulin, S., Billon, E., Richaud, P., Brugière, S., Couté, Y., Nurizzo, D., Müller, P., Brettel, K., Pignol, D., Arnoux, P., Li-Beisson, Y., Peltier, G., & Beisson, F. (2017). An algal photoenzyme converts fatty acids to hydrocarbons. Science, 357(6354). https://doi.org/10.1126/science.aan6349

Sukenik, A., Zmora, O., & Carmeli, Y. (1993). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture, 117(3–4). https://doi.org/10.1016/0044-8486(93)90328-V

Winkler, C. K., Simić, S., Jurkaš, V., Bierbaumer, S., Schmermund, L., Poschenrieder, S., Berger, S. A., Kulterer, E., Kourist, R., & Kroutil, W. (2021). Accelerated reaction engineering of photo(bio)catalytic reactions through parallelization with an open-source photoreactor. ChemPhotoChem, 5(10). https://doi.org/10.1002/cptc.202100109

Wu, Y., Paul, C. E., & Hollmann, F. (2021). Stabilisation of the fatty acid decarboxylase from Chlorella variabilis by caprylic acid. ChemBioChem, 22(14). https://doi.org/10.1002/cbic.202100182

Zeng, Y. Y., Liu, L., Chen, B. S., & Zhang, W. (2021). Light-driven enzymatic decarboxylation of dicarboxylic acids. ChemistryOpen, 10(5). https://doi.org/10.1002/open.202100039

Downloads

Submitted

11-09-2024

Accepted

14-11-2024

Published

20-11-2024

How to Cite

kresnawaty, I., Palgunadi, F., Faramitha, Y., Lischer, K., Saraswanti, A. R., Fitriyah, F., & Santoso, D. (2024). Synthesis of bio-hydrocarbons pentadecane from crude palm oil (CPO) using recombinant E.coli produced fatty acid photodecarboxylase From Chlorella variabilis . Menara Perkebunan, 92(2). https://doi.org/10.22302/iribb.jur.mp.v92i2.592

Most read articles by the same author(s)

1 2 3 4 5 6 > >>