SPAD-502 and atLEAF CHL PLUS values provide good estimation of the chlorophyll content for Hevea brasiliensis Müll. Arg. Leaves

Authors

  • Andi Nur CAHYO Indonesian Rubber Research Institute http://orcid.org/0000-0003-2580-2600
  • Rudi Hari MURTI Universitas Gadjah Mada
  • Eka Tarwaca Susila PUTRA Universitas Gadjah Mada
  • Tri Rini NURINGTYAS Universitas Gadjah Mada
  • Denis FABRE CIRAD
  • Pascal MONTORO CIRAD

DOI:

https://doi.org/10.22302/iribb.jur.mp.v88i1.369

Keywords:

atLEAF CHL PLUS, chlorophyll content, conversion formula, Hevea brasiliensis, SPAD-502

Abstract

Measurement of chlorophyll content using destructive methods is not efficient due to a large number of samples, cost, and time needed. Estimationof chlorophyll content by nondestructive methods using handheld chlorophyll meter may be considered to improve efficiency. This research aimed to determine the formula to convert SPAD-502 and atLEAF CHL PLUS values (relative indicator of chlorophyll content) to estimated (absolute) rubber leaves chlorophyll content. Twenty leaves of rubber plant were measured using SPAD-502 and atLEAF CHL PLUS at the same time to determine SPAD-502 and atLEAF CHL PLUS values. The measured leaves were then collected to determine the chlorophyll content using a standard laboratory procedure. Regression and correlation analyses (among 3 methods) were conducted using SAS v.9 software. The results showed that between SPAD-502 and atLEAF CHL PLUS values were closely correlated, hence both of the devices can substitute each other to estimate rubber leaf chlorophyll content. In addition, the relationship between atLEAF CHL PLUS and SPAD-502 values with actual chlorophyll content of rubber clone SP 217, PB 260, GT1, and all clones (general) were significant with high coefficient of determination (R2) as well as low Root Mean Square Error (RMSE) and Coefficient of Variation (CV). Therefore, by using formula determined in this study, both atLEAF CHL PLUS and SPAD-502 can be suggested for accurate, fast, and non-destructive estimation of chlorophyll content of rubber plant leaf.

Downloads

Download data is not yet available.

Author Biographies

Andi Nur CAHYO, Indonesian Rubber Research Institute

Agronomy

Rudi Hari MURTI, Universitas Gadjah Mada

Plant Breeding, Agriculture Faculty

Eka Tarwaca Susila PUTRA, Universitas Gadjah Mada

Agronomy, Agriculture Faculty

Tri Rini NURINGTYAS, Universitas Gadjah Mada

Faculty of Biology

References

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1

Coste, Sabrina, Roggy, J.-C., Imbert, P., Born, C., Bonal, D., & Dreyer, E. (2005). Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. Tree Physiology, 25(9), 1127–1137. https://doi.org/10.1093/treephys/25.9.1127

Coste, Sabrina, Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A. D., … Hérault, B. (2010). Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science, 67(6), 607–607. https://doi.org/10.1051/forest/2010020

Curran, P. J., Windham, W. R., & Gholz, H. L. (1995). Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology, 15(3), 203–206. https://doi.org/10.1093/treephys/15.3.203

da Silva, P. P., Soares, L., da Costa, J. G., da Silva Viana, L., de Andrade, J. C. F., Gonçalves, E. R., … Neto, C. E. R. (2012). Path analysis for selection of drought tolerant sugarcane genotypes through physiological components. Industrial Crops and Products, 37(1), 11–19. https://doi.org/10.1016/j.indcrop.2011.11.015

Filella, I., Serrano, L., Serra, J., & Peñuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35, 1400–1405.

FT GREEN LLC. (2019). atLEAF CHL PLUS Chlorophyll Meter User Manual 0131-50 Ver 1.1. FT GREEN LLC.

Gomez, J. B., & Hamzah, S. B. (1980). Variations in Leaf Morphology and Anatomy between Clones of Hevea. Journal of the Rubber Research Institute of Malaysia, 28(3), 157–172.

Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., & Ceccarelli, S. (2008). QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163, 203–214. https://doi.org/DOI 10.1007/s10681-007-9629-6

Hawkins, J. A., Sawyer, J. E., Barker, D. W., & Lundvall, J. P. (2007). Using Relative Chlorophyll Meter Values to Determine Nitrogen Application Rates for Corn. Agronomy Journal, 99(4), 1034. https://doi.org/10.2134/agronj2006.0309

Hawkins, T. S., Gardiner, E. S., & Comer, G. S. (2009). Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2), 123–127. https://doi.org/10.1016/j.jnc.2008.12.007

Hendry, G. A. F., & Price, A. H. (1993). Stress indicators: chlorophylls and carotenoids. In G. A. F. Hendry & J. P. Grime (Eds.), Methods in Comparative Plant Ecology (pp. 148–152). Chapman & Hall, London.

Kapotis, G., Zervoudakis, G., Veltsistas, T., & Salahas, G. (2003). Comparison of Chlorophyll Meter Readings with Leaf Chlorophyll Concentration in Amaranthus vlitus: Correlation with Physiological Processes. Russian Journal of Plant Physiology, 50(3), 395–397.

Lee, T.-S., & Lu, W.-C. (2010). An evaluation of empirically-based models for predicting energy performance of vapor-compression water chillers. Applied Energy, 87(11), 3486–3493. https://doi.org/10.1016/j.apenergy.2010.05.005

Limantara, L., Dettling, M., Indrawati, R., Indriatmoko, & Brotosudarmo, T. H. P. (2015). Analysis on the Chlorophyll Content of Commercial Green Leafy Vegetables. Procedia Chemistry, 14, 225–231. https://doi.org/10.1016/j.proche.2015.03.032

Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46(3), 467–472. https://doi.org/10.1007/BF00032301

Martins, M. B. G., & Zieri, R. (2003). Leaf anatomy of rubber-tree clones. Scientia Agricola, 60(4), 709–713. https://doi.org/10.1590/S0103-90162003000400015

Mendoza-Tafolla, R. O., Juarez-Lopez, P., Ontiveros-Capurata, R.-E., Sandoval-Villa, M., Alia-Tejacal, I., & Alejo-Santiago, G. (2019). Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3). https://doi.org/10.15835/nbha47311525

Minolta. (1989). Chlorophyll meter SPAD-502. Instruction manual. Minolta Co., Ltd., Radiometric Instruments Operations, Osaka, Japan.

Netto, A. T., Campostrini, E., Oliveira, J. G. de, & Bressan-Smith, R. E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104(2), 199–209. https://doi.org/10.1016/j.scienta.2004.08.013

Novichonok, E. V., Novichonok, A. O., Kurbatova, J. A., & Markovskaya, E. F. (2016). Use of the atLEAF+ chlorophyll meter for a nondestructive estimate of chlorophyll content. Photosynthetica, 54(1), 130–137. https://doi.org/10.1007/s11099-015-0172-8

Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185–194. https://doi.org/10.1046/j.0028-646X.2001.00289.x

Ruiz-Espinoza, F. H., Murillo-Amador, B., García-Hernández, J. L., Fenech-

Larios, L., Rueda-Puente, E. O., Troyo-Diéguez, E., … Beltrán-Morales, A. (2010). Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. Journal of Plant Nutrition, 33(3), 423–438. https://doi.org/10.1080/01904160903470463

SAS Institute Inc. (2002). The SAS System for Windows (Version 9). Cary, NC, USA: SAS Institute Inc.

Steele, M. R., Gitelson, A. A., & Rundquist, D. C. (2008). A Comparison of Two Techniques for Nondestructive Measurement of Chlorophyll Content in Grapevine Leaves. Agronomy Journal, 100(3), 779. https://doi.org/10.2134/agronj2007.0254N

Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed). Sunderland, Mass: Sinauer Associates.

Uddling, J., Gelang-Alfredsson, J., Piikki, K., & Pleijel, H. (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1), 37–46. https://doi.org/10.1007/s11120-006-9077-5

van den Berg, A. K., & Perkins, T. D. (2004). Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecology and Management, 200(1–3), 113–117. https://doi.org/10.1016/j.foreco.2004.06.005

Zhu, J., Tremblay, N., & Liang, Y. (2012). Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science, 92(4), 645–648. https://doi.org/10.4141/cjss2011-100

Downloads

Submitted

28-02-2020

Accepted

06-04-2020

Published

18-05-2020

How to Cite

CAHYO, A. N., MURTI, R. H., PUTRA, E. T. S., NURINGTYAS, T. R., FABRE, D., & MONTORO, P. (2020). SPAD-502 and atLEAF CHL PLUS values provide good estimation of the chlorophyll content for Hevea brasiliensis Müll. Arg. Leaves. Menara Perkebunan, 88(1). https://doi.org/10.22302/iribb.jur.mp.v88i1.369