Application of bio-silicic acid to improve yield and fertilizer efficiency of paddy on tidal swamp land

Authors

  • Donny Nugroho KALBUADI Indonesian Research Institute for Biotechnology and Bioindustry
  • Laksmita Prima SANTI Indonesian Research Institute for Biotechnology and Bioindustry
  • Didiek Hadjar GOENADI Indonesian Research Institute for Biotechnology and Bioindustry
  • Junita BARUS Assessment Institute of Agricultural Technology Lampung

DOI:

https://doi.org/10.22302/iribb.jur.mp.v88i2.378

Keywords:

Si fertilizer, Si-solubilizing fungi, water-soluble Si

Abstract

The soils in tidal swamp land as new development area for rice in Indonesia have a considerably low available silica (Si) because very acid condition and no Si fertilization. Therefore, increasing the productivity of rice as Si accumulator plant, in tidal swamp land requires silica fertilizer. This research presented the effect of applications of silicon in the form of orthosilicic acid (H4SiO4) enriched with selected Sisolubilizing fungi, formulated as 4-gram tableted Si fertilizer (BioSilAc) on tidal swamp land soil to improve yield and reduce chemical fertilizer dosage for rice. Field experiment was conducted in Ketapang subdistrict, South Lampung by using a Randomized Block Design (RBD) with six treatments and four replicates. The treatments consisted of (ha-1 season-1): 100% NPK recommended dosage (P1); 100% NPK + 80 BioSilAc tablets (P2); 75% NPK + 80 BioSilAc tablets (P3); 75% NPK + 100 BioSilAc tablets (P4); 50% NPK + 120 BioSilAc tablets (P5); and control (P6). The results showed that P2 treatment increased the highest rice yield in dried harvested grain by 7.6% or equivalent to 500 kg ha-1 compared to P1 treatment. The highest fertilization efficiency can be achieved in P4 treatment which means the NPK recommended dosage can be reduced 25% by adding 100 BioSilAc tablets ha-1 season-1 indicated by insignificantly different productivity compared to that of P1. The Revenue/Cost (R/C) values showed that P2 treatment was economically feasible fertilization practices.

Downloads

Download data is not yet available.

References

Ahmad A, Afzal M, Ahmad AUH & Tamir M (2013). Effect of foliar application of silicon on yield and quality of rice (Oryza sativa L.). Ceecetari Agron 10 (3), 106-155.

Alhousari F & M Greger (2018). Silicon and mechanisms of plant resistence to insect pests. Plant 7, 1-11.

Alvarez J & LE Datnoff (2001). The economic potential of silicon for integrated management and sustainable rice production. CropProtect 20, 43–48.

Amanah DM, N Haris, & LP Santi (2019). Physiological responses of bio-silica-treated oil palm seedlings to drought stress. Menara Perkebunan 87 (1), 20-30.

Arsyad DM, B Saidi & Enrizal (2014). Pengembangan inovasi pertanian di lahan rawa pasang surut mendukung kedaulatan pangan. Pengembangan Inovasi Pertanian 7, 169-176.

Balai Pengkajian Teknologi Pertanian Kalimantan Selatan (2011). Deskripsi sederhana varietas padi tahun 1978-2010. Kalimantan selatan, Balai Pengkajian Teknologi Pertanian Kalimantan Selatan. 120p.

Botta A, FA Rodriguess, N Sierras, C Marin, JM Cerda & R Brossa (2014) Evaluation of Armurox® (complex of peptide water soluble silicon) on mechanical and biotic stresses in graminae. In: Proceeding 6th Internat. Conf. Silicon in Agric. Stockholm, Sweden, 26-30 August 2014 p. 72.

Crooks R & P Prentice (2017). Extensive investigation into field based responses to a silica fertilizer. Silicon 9(2), 301–304.

Detmann KC, WL Araújo, SCV Martins, LMVP Sanglard, JV Reis, E Detmann, FÁ Rodrigues, A Nunes-Nesi, AR Fernie, & FM DaMatta (2012). Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196 (3), 752–762.

Farooq MA & KJ Dietz (2015). Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Front Plant Sci 6, 1–14.

Fillipi, MC, ACA Souza, ST Pereira, SA Prabhu & BG Silva (2014). Silicon and biogents in leaf rice blast suppression. In: Proceeding 6th Internat. Conf. Silicon in Agric. Stockholm, Sweden, 26-30 August 2014 p:46.

Gerami M, A Fallah, & MRK Moghadam (2012). Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryza sativa L.). Int J Agric Crop Sci. 4 (10), 658–661.

Goenadi DH, LP Santi, J Barus, & A Dariah (2018). Bio-silifikasi sel dan imobilisasi aluminium oleh bio-nano OSA untuk efisiensi penggunaan air dan hara kedelai hitam di lahan kering masam. Laporan Akhir Kegiatan KP4S Tahun 2018. p 69 .

Goenadi DH, LP Santi, A Dariah, J Barus, & DN Kalbuadi. (2019). Improved black soybean performances grown on selected highly weathered soils by using bio-nano-ortho silicic acid. IOP Conf. Series: Earth and Environmental Science 393.

Heckman J (2013). Silicon: a beneficial substance. Better Crops 97(4),14-16.

Keeping MG & OL Reynolds (2009). Silicon in agriculture: New insights, new significance and growing application. Ann Appl Biol 155, 153–154.

Lestari AP, IA Rumanti, T Sitaresmi, & I Khairullah (2019). Tidal swamp tolerant rice lines: climate change adaptive varieties. IOP Conf. Series: Earth and Environmental Science 423.

Ma JF & E Takahashi (2002). Soil, Fertilizer, and Plant Silicon Research in Japan. Amsterdam : Elsevier, 292 pages

Ma JF, RF Ryan, & D Delhaize (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6), 273-278.

Meena VD, ML Dotaniya, V Coumar, S Rajendiran, S Kundu & AS Rao (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci Ind, Sect B: Biol Sci 84, 505–518.

Meharg C & AA Meharg (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality in rice. Environ Exp Bot 120, 8–17.

Mitani N, JF Ma, & T Iwashita (2005). Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46, 279-283.

Ning D, A Song, F Fan, Z Li, & Y Liang (2014). Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. PLoS ONE 9(7), 1-9.

Pati S, B Pal, S Badole, GC Hazra & B Mandal (2016). Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plant Anal 47, 284–290.

Prakash NB, N Chandrashekar, C Mahendra, SU Patil, GN Thippeshappa & HM Laane (2011). Effect of foliar spray of soluble silicon acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, South India. J Plant Nutr 34, 1883–1893.

Rao GB & P Susmitha (2017). Silicon uptake, transportation and accumulation in rice. Journal of Pharmacognosy and Phytochemistry 6(6), 290-293.

Rao GB, PY Pi & EK Syriac (2017). Silicon nutrition in rice: A review. Journal of Pharmacognosy and Phytochemistry Vol. 6(6): 390-392.

Sahebi M, MM Hanafi, ASN Akmar, MY Rafii, P Azizi, FF Tengoua, JNM Azwa, & M Shabanimofrad (2015). Importance of silicon and mechanisms of biosilica formation in plants. Biomed Research International Article ID 396010, 16 pages.

Santi LP & DH Goenadi (2017). Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85 (2), 95-104.

Santi LP, D Mulyanto, & DH Goenadi (2017). Double acid-base extraction of silicic acid from quartz sand. Journal of Minerals and Materials Characterization and Engineering 5(6), 362-373.

Santi LP, DH Goenadi, J Barus, & A Dariah (2018). Pengaruh bio-nano silika terhadap hasil dan efisiensi penggunaan air kedelai hitam di lahan kering masam. Jurnal Tanah dan Iklim 42 (1), 43-52

Santi LP, DH Goenadi, J Barus, A Dariah, & DN Kalbuadi (2019). Effects of bio-nano OSA application on fertilizer use and water consumption efficiencies of black soybean grown on rice-field. Jurnal Tanah dan Iklim 43 (2), 105-112

Silva ON, AKS Lobato, FW Ávila, RCL Costa, CFO Neto, BGS Filho, APM Filho, RP Lemos, JM Pinho, MBCL Medeiros, MS Cardoso, & IP Andrade (2012). Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ 58 (11), 481–486.

Siregar AF & WA Yusuf (2020). Ameliorasi berbasis unsur hara silika di lahan rawa. Jurnal Sumberdaya Lahan 14 (1), 37-47.

Song A, P Li, F Fan, Z Li, & Y Liang (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under High-Zinc Stress. PLoS ONE 9(11). e113782. doi:10.1371/journal. pone.0113782.

Steel RGD & JH Torrie (1980). Principles and Procedures of Statistics. A Biometrical approach. 2nd ed. New York, McGraw-Hill.

Suratiyah K, Djuwari, Supriyanto, & L R Waluyati (2003). Studi analisa usaha tani untuk tujuh (7) komoditas di Kabupaten Bantul. Fakultas Pertanian UGM dan BAPPEDA Kabupaten Bantul. Yogyakarta.

Talbot MJ & GW Rosemary (2013). Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9 (36), 1-7.

Wellburn AR (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144 (3), 307-313.

Wiryawan B, H Puspitasari, AK Mahi, M Ahmad & HA Susanto (2001). Profil sumberdaya wilayah pesisir Desa Pematang Pasir, Kecamatan Ketapang, Lampung Selatan. Penerbitan Proyek Pesisir, Coastal Resources Center, University of Rhode Island. Narraganset, Rhode Island. 40 pp.

Wisconsin State Lab of Hygiene (1992). ESS Method 360.2: Silica Dissolved, Automated, Colorimetric. Wisconsin State Lab of Hygiene 3 (2), 209-212.

Downloads

Submitted

19-05-2020

Accepted

05-10-2020

Published

30-10-2020

How to Cite

KALBUADI, D. N., SANTI, L. P., GOENADI, D. H., & BARUS, J. (2020). Application of bio-silicic acid to improve yield and fertilizer efficiency of paddy on tidal swamp land. Menara Perkebunan, 88(2). https://doi.org/10.22302/iribb.jur.mp.v88i2.378

Most read articles by the same author(s)

1 2 3 > >>