Genetic relationships in Saccharum complex germplasm collections based on morphological and molecular markers
DOI:
https://doi.org/10.22302/iribb.jur.mp.v89i1.421Keywords:
germplasm collection, heterozygosity, heterosis, microsatellites, Saccharum complexAbstract
Sugarcane has a high degree of heterozygosity and is a cross-pollinator, so information about the genetic relationship between the accessions in germplasm collections is very important for selecting the prospective parent in crossbreeding. This research aims to determine the phylogenetic relationship of 24 Saccharum complex accessions and to verify the grouping of accessions using 37 morphological and three microsatellite molecular markers. Interpretation of morphological and molecular data was obtained from the analysis using the NTYSYpc-2.02i program. The results show that within the 24 accessions analyzed using morphological markers, some accessions did not cluster as the classification at the conservation time. This difference is due to the morphological markers, so the value of genetic similarity among accessions analyzed is increased. In contrast, the grouping of molecular markers shows that each accession was grouped according to the classification at the conservation time. These accessions had a low genetic similarity of 0.20 with a broad genetic distance of 0.80. This broad genetic distance indicates that the twenty-four accessions have a distant genetic relationship with one another, so that the genetic diversity of these accessions is relatively high. The high genetic diversity in germplasm collections improves its potential as a crossing parent to obtain a high heterosis effect.
Downloads
References
Aitken K, Li J, Piperidis G, Qing C, Yuanhong F & Jackson P (2018) Worldwide genetic diversity of the wild species Saccharum spontaneum and level of diversity captured within sugarcane breeding programs. Crop Sci 58(1), 218–29.
Ali A, Yong bao-Pan, Qin-Nan Wang, Jin-Da Wang, Jun-Le Chen & San-Ji Gao. (2019). Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite markers. Sci Rep 9, 395.
Alix K, F Baurens, F Paulet, J Glaszmann & AD Hont (1998). Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 864 (Arceneaux 1965), 854–864.
Alwala S, A Suman, JA Arro, JC Veremis, & CA Kimbeng (2006). Target Region Amplification Polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci (44), 448–455. doi: 10.2135/cropsci2005.0274.
Amalraj VA & N Balasundaram (2006). On the taxonomy of the members of Saccharum complex. Genetic Res Crop Evol (53), 35-41.
Bagali PG, PDAH Prabhu, K Raghavendra, PG Bagali & JS Vadivelu (2010). Application of molecular markers in plant tissue culture. J Mol Biol Biotechnol 18(1), 85–87.
Birchler JA & NC Riddle (2014). In search of the molecular basis of heterosis. Plant Cell 15, 2263–2239. doi: 10.1105/tpc.151030.
Burnquist WL, ME Sorelles & S Tanksley (1995). Characterisations of genetic variability in Saccharum germplasm by means of restricted fragment length polymorphism (RFLP) analysis. Proc ISSCT 21,355-356.
Caroll BJ & MD Curtis (1996). Plant biotechnology research and prospects for sugarcane, including transformation. Proc ISSCT 22,5-14.
Cordeiro GM, YB Pan & RJ Henry (2003). Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165,181–189.
Costa MLM Da, Amorim LLB, Onofre AVC, Melo LJOT de, Oliveira MBM de, & Carvalho R (2011). Assessment of genetic diversity in contrasting sugarcane varieties using Inter-Simple Sequence Repeat (ISSR) markers. Am J Plant Sci 2, 425 – 432.
D’Hont A & JE Glaszmann (2001). Sugarcane genome analysis with molecular markers: A first decade of research. Proc ISSCT 24, 556-559.
Devarumath BM, Kalwade SB, Kawar PG & Sushir KV (2012). Assesment of genetic diversity in sugarcane germoplasm using ISSR and SSR markers. Sugar Tech 14, 334-344. https://doi.org/10.1007/s12355-012-0168-7
Diederichs GW, MA Mandegari, S Farzad, & JF Görgens (2016). Technology Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour Technol 216, 331–339. doi: 10.1016/j.biortech.2016.05.090.
dos Santos JM, Duarte Filho LSC, Soriano ML, da Silva PP, Nascimento VX & de Souza Barbosa GV (2012). Genetic diversity of the main progenitors of sugarcane from the RIDESA germplasm bank using SSR markers. Elsevier 40, 145–150.
FAO (2019). Country report on the state of plant genetic resources for food and agriculture. Indonesia.
Hameed U, Y-B Pan, K Muhammad, S Afghan & J Iqbal (2012). Use of simple sequence repeat markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp) cultivars resistant and susceptible to red rot. Genet Mol Res 11 (2), 1195-1204.
Indah JN, S Liliek & SA Noor (2008). Cucumber (Cucumis sativus L.) relationship analysis using RAPD-PCR and isozyme methods. Biodiversity 9, 99–102. doi: 10.13057/biodiv/d090205.
ISRI (1997). One hundred and ten years of service. Indonesian Sugar Research Institute. Pasuruan.
Karuri H, EM Ateka, R Amata, AB Nyende, AWT Muigai, E Mwasame & ST Gichuki, (2010). Diversity among kenyan sweet potato genotypes using morphological and SSR Markers. J Agric Biol 12, 33-38.
Khan FA, FM Azhar & S Rauf (2009). Genetic diversity of Saccharum officinarum accessions in Pakistan as revealed by random amplified polymorphic DNA. Genet Mol Res 8(4), 1376–1382.
Lamadji S (1994). Pelestarian plasma nutfah tebu. Gula Indonesia XIX/1:33-37.
Liu X, Li X, Liu H, Xu C, Lin X, Li C & Z Deng. (2016). Phylogenetic analysis of different ploidy Saccharum spontaneum based on rDNA-ITS sequences. PLoS ONE 11(3), e0151524. https://doi.org/10.1371/journal.pone.0151524
Lopes AD, CA Scapim, M De Fátima, S Machado, & CA Mangolin (2015). Genetic diversity assessed by microsatellite markers in sweet corn cultivars. Sci Agric 72(6), 513–519. doi: 10.1590/0103-9016-2014-0307.
Manechini JRV, JB da Costa, BT Pereira, LA Carlini-Garcia, MA Xavier, MGdA Landell, & LR Pinto (2018). Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers. PLoS ONE 13(4), e0195623. https://doi.org/ 10.1371/journal.pone.0195623
Manish DS, Upma Dobha, Prashant Singh, Shailender Kumar, AK Gaur1, SP Singh, AS Jeena, Eapen P Koshy & S Kumar (2014). Assessment of genetic diversity among sugarcane cultivars using novel microsatellite markers. African J Biotechnol 13(13), 1444-1451.
Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res 27(2), 209-20.
Marconi TG, Costa EA, Miranda HR, Mancini MC, Cardoso-Silva CB & Oliveira KM (2011). Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes. doi: 10.1186/1756-0500-4-264.
Martinez L, P Cavagnaro, N Scientific & R Masuelli (2003). Evaluation of diversity among Argentine grapevine (Vitis vinifera L.) varieties using morphological data and AFLP markers protein interactions in enzymatic processes in textiles. J Biotechnol 6, doi: 10.2225/vol6-issue3-fulltext-11.
Medeiros C, Balsalobre TWA & Carneiro MS (2020). Molecular diversity and genetic structure of Saccharum complex accessions. PLoS ONE 15(5): e0233211. https : //doi.org/10.1371/journal.pone.0233211
Mirzawan PDN, WB Widyasari & G Sukarso (2014). Sumberdaya genetik tebu: status dan pemanfaatannya. Badan Penelitian dan Pengembangan Pertanian. Kementrian Pertanian. Jakarta. p. 122-148.
Oliveira LAR, CA Machado, MN Cardoso, ACA Oliveira, AL Amaral, ARC Rabbani, AVC Silva & AS Ledo (2017). Genetic diversity of Saccharum complex using ISSR markers. Genet Mol Res 16 (3), doi: http://dx.doi.org/10.4238/gmr16039788
Pan YB, Gm Cordeiro, EP Richard & RJ Henry (2003). Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica (48),319-329
Pan YB (2010). Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci 1, 87–94.
Pandey A, Mishra RK, Mishra S, Singh YP & S Pathak (2011). Assessment of genetic diversity among sugarcane cultivars (Saccharum officinarum L.) using simple sequence repeats markers. J Biol Sci 11, 105-111. https://doi.org/10.3844/ojbsci.2011.105.111
Parida S, S Kalia, G Hemaprabha & S Athiappan (2008). Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet. doi: 10.1007/s00122-008-0902-4.
Pocovi IM, NoG Collavino, Ángela Gutiérrez, Gisel Taboada, Verónica Castillo, Romina Delgado, Jorge A & Mariotti (2020). Molecular versus morphological markers to describe variability in sugar cane (Saccharum officinarum) for germplasm management and conservation. Rev FCA UNCUYO 52(1), 40-60.
Raj P, Selvi A, Prathima PT & Nair NV (2016). Analysis of genetic diversity of Saccharum complex using chloroplast microsatellite markers. Sugar Tech 18, 141-148. https://doi.org/10.1007/s12355-015-0382-1
Rao VP, Singh S, Chaudhary R, Sharma MK, SR Sengar, UM Singh & V Sharma (2016). Genetic variability in sugarcane (Saccharum spp. Hybrid) genotypes through inter simple sequence repeats (ISSR) markers. J Appl Nat Sci 8, 1404-1409
Saghai-Maroof MA, SKM Jorgensen & Allard (1984). Ribosomal DNA spacer-length polymorphisms in barley : Mendelian inheritance, chromosomal location , and population dynamics. Proc Natl Acad Sci USA,. p. 8014–8018
Sastrowijono S (1996). Cara mengenal klon klon tebu secara morfologis. Indonesian Sugarcane Research Institute, Pasuruan.
Schenk M, MW Crepeau, PH Moore, WK, Q Yu, & R Ming (2004). Genetic diversity and relationships in native Hawaiian Saccharum officinarum Sugarcane. J Hered 95(4), 327-331. doi: 10.1093/jhered/esh052.
Silva DCD, Filho L, Santos J dos, Barbosa G de S, Almeida C & Sérgio L (2012). DNA fingerprinting based on simple sequence repeat (SSR) markers in sugarcane clones from the breeding program RIDESA. African J Biotechnol 11, 4722–4728.
Singh RB, B Singh & RK Singh (2018). Evaluation of genetic diversity in Saccharum species clones and commercial varieties employing molecular (SSR) and physiological markers. Indian J Plant Genet Res 31(1),17–26.
Sneath PH & RR Sokal (1973). Numerical Taxonomy: the principles and practice of numerical classification. San Francisco: Freeman.
Todd J, Wang J, Glaz B, Sood S, Ayala-Silva T, Nayak SN, NC Glynn, OA Gutierrez, DN Kuhn, M Tahir & JC Comstock (2014). Phenotypic characterization of the Miami World Collection of sugarcane (Saccharum spp.) and related grasses for selecting a representative core. Genet Resour Crop Ev 61(8),1581–96.
Ullah SMS, Hossain MA, Hossain MM, Barman S, MH Sohag & SH Prodhan (2013). Genetic diversity analysis of chewing sugarcane (Saccharum officinarum L.) varieties by using RAPD markers. J Biosci Biotechnol 2, 145-150.
Vieira MLC, L Santini, AL Diniz & CF Munhoz (2016). Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol 39, 312–328. pmid:27561112
Vieira MLC, Almeida CB, Oliveira CA, Tacuatiá LO, Munhoz CF & Cauz-Santos L (2018). Revisiting meiosis in sugarcane: Chromosomal irregularities and the prevalence of bivalent configurations. Front Genet 14 (9), 213. pmid:29963076
Widyasari WB, Nur Basuki, & Eka Sugiyarta (2008). Identifikasi keragaman genetik koleksi tebu asli (S. officinarum) asal Indonesia menggunakan penanda molekuler mikrosatelit. Majalah Penelitian Gula 44(2), 73-95
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, et al (2018). Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. (2018). Nature genet. 50(11),1565–73. pmid:3029
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.