Improvement of purification process of stevia extract by combination of microfiltration and ultrafiltration
DOI:
https://doi.org/10.22302/iribb.jur.mp.v91i1.521Abstract
Microfiltration and ultrafiltration are used for the purification process of stevia extract to retain steviosides and remove tannins. The main objective of this study was to obtain the operating conditions for the purification process of stevia extract that resulted in the lowest stevioside rejection and highest tannin rejection. The purification process of stevia extract using microfiltration membrane was carried out at transmembrane pressure (1.20, 1.40, 1.65, 1.80, and 1.90 bar), cross flow velocity (0.04, 0.06, and 0.11 m s-1), and stevioside concentration of feed (7.12, 10.25, 14.03, and 18.47 g L-1). The stevia extract purification process used ultrafiltration membrane at transmembrane pressure (1.20, 1.40, 1.65, 1.80, and 1.90 bar), cross flow velocity (0.06, 0.09, and 0.12 m s-1), and stevioside concentration of feed (4.59 and 10.36 g L-1). The first step purification process was carried out using a microfiltration membrane and the resulting permeate was used as feed for the ultrafiltration process. The second step purification process was carried out using an ultrafiltration membrane. The best operating conditions of the microfiltration process were feed stevioside concentration of 14.03 g L-1 at a transmembrane pressure of 1.90 bar and a cross flow velocity of 0.11 m s-1 with a permeate flux of 82.90 L m-2 h-1. The best operating conditions of the ultrafiltration process used a feed stevioside concentration of 10.36 g L-1 with a permeate flux of 26.51 L m-2 h-1 at a transmembrane pressure of 1.90 bar and a cross flow velocity of 0.12 m s-1. The microfiltration and ultrafiltration processes resulted in total stevioside rejection of 59.52 % and total tannin rejection of 57.99 %.
Downloads
References
Abou-Arab, E. A., Abou-Arab, A., & Abu-Salem, F. (2009). Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebudiana Bertoni plant. Journal Food and Dairy Sciences, 34(12), 11037–11057. https://doi.org/10.21608/jfds.2009.115819
Ahmad, J., Khan, I., Blundell, R., Azzopardi, J., & Mahomoodally, M. F. (2020). Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science Technology, 100, 177–189. https://doi.org/10.1016/j.tifs.2020.04.030
Basharat, S., Huang, Z., Gong, M., Lv, X., Ahmed, A., Hussain, I., Li, J., Du, G., & Liu, L. (2021). A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chinese Journal of Chemical Engineering, 30, 92–104. https://doi.org/10.1016/j.cjche.2020.10.018
Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370(January 2021). https://doi.org/10.1016/j.foodchem.2021.130991
Castro-Muñoz, R., Díaz-Montes, E., Cassano, A., & Gontarek, E. (2021). Membrane separation processes for the extraction and purification of steviol glycosides: an overview. In Critical Reviews in Food Science and Nutrition (Vol. 61, Issue 13, pp. 2152–2174). Bellwether Publishing, Ltd. https://doi.org/10.1080/10408398.2020.1772717
Chhaya, Majumdar, G. C., & De, S. (2013). Primary clarification of stevia extract: a comparison between centrifugation and microfiltration. Separation Science and Technology (Philadelphia), 48(1), 113–121. https://doi.org/10.1080/01496395.2012.674605
Chhaya, Mondal, S., Majumdar, G. C., & De, S. (2012). Clarifications of stevia extract using cross flow ultrafiltration and concentration by nanofiltration. Separation and Purification Technology, 89, 125–134.https://doi.org/10.1016/j.seppur.2012.01.016
Díaz-Montes, E., Gutiérrez-Macías, P., Orozco-Álvarez, C., & Castro-Muñoz, R. (2020). Fractionation of Stevia rebaudiana aqueous extracts via two-step ultrafiltration process: Towards rebaudioside A extraction. Food and Bioproducts Processing, 123, 111-122. https://doi.org/10.1016/j.fbp.2020.06.010
Das, A., Paul, D., Golder, A. K., & Das, C. (2015). Separation of Rebaudioside-A from stevia extract: Membrane selection, assessment of permeate quality and fouling behavior in laminar flow regime. Separation and Purification Technology, 144, 8–15. https://doi.org/10.1016/j.seppur.2015.02.004
Gallo, M., Vitulano, M., Andolfi, A., DellaGreca, M., Conte, E., Ciaravolo, M., & Naviglio, D. (2017). Rapid Solid-Liquid Dynamic Extraction (RSLDE): a New Rapid and Greener Method for Extracting Two Steviol Glycosides (Stevioside and Rebaudioside A) from Stevia Leaves. Plant Foods for Human Nutrition, 72(2), 141–148. https://doi.org/10.1007/s11130-017-0598-1
Gao, Y., Qin, J., Wang, Z., & Østerhus, S. W. (2019). Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587.
https://doi.org/10.1016/j.memsci.2019.05.060
Gasmalla, M. A. A., Yang, R., Musa, A., Hua, X., & Ye, F. (2017). Influence of sonication process parameters to the state of liquid concentration of extracted rebaudioside A from Stevia (Stevia rebaudiana Bertoni) leaves. Arabian Journal of Chemistry, 10(5), 726–731. https://doi.org/10.1016/j.arabjc.2014.06.012
Huang, X. Y., Fu, J. F., & Di, D. L. (2010). Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Separation and Purification Technology, 71(2), 220–224. https://doi.org/10.1016/j.seppur.2009.11.025
Hubert, J., Borie, N., Chollet, S., Perret, J., Barbet-Massin, C., Berger, M., Daydé, J., & Renault, J. H. (2015). Intensified separation of steviol glycosides from a crude aqueous extract of stevia rebaudiana leaves using centrifugal partition chromatography. Planta Medica, 81(17), 1614–1620. https://doi.org/10.1055/s-0035-1545840
Jaitak, V., Bandna, Singh, B., & Kaul, V. K. (2009). An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni). Phytochemical Analysis, 20(3), 240–245. https://doi.org/10.1002/pca.1120
Kaur, G., Pandhair, V., & Cheema, G. S. (2014). Extraction and characterization of steviol glycosides from Stevia rebaudiana Bertoni leaves. Journal Medicinal Plants Studies, 2(5), 41–45.
Kazemi, M. A., Soltanieh, M., & Yazdanshenas, M. (2013). Mathematical modeling of crossflow microfiltration of diluted malt extract suspension by tubular ceramic membranes. Journal of Food Engineering, 116(4), 926–933. https://doi.org/10.1016/j.jfoodeng.2013.01.029
Kirschner, A. Y., Cheng, Y. H., Paul, D. R., Field, R. W., & Freeman, B. D. (2019). Fouling mechanisms in constant flux crossflow ultrafiltration. Journal of Membrane Science, 574, 65–75. https://doi.org/10.1016/j.memsci.2018.12.001
Kootstra, A. M. J., Elissen, H. J. H., & Huurman, S. (2015). Extraction of steviol glycosides from fresh Stevia using acidified water; clarification followed by ultrafiltration and nanofiltration. National Centre for Applied Research on Renewable Energy and Green Resources, February, 1–38.
Kovačević, D. B., Maras, M., Barba, F. J., Granato, D., Roohinejad, S., Mallikarjunan, K., Montesano, D., Lorenzo, JM., & Putnik, P. (2018). Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chemical, 268, 513-521. https://doi.org/10.1016/j.foodchem.2018.06.091
Kurek, J. M., & Krejpcio, Z. (2019). The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potential – A review. Journal of Functional Foods, 61. https://doi.org/10.1016/j.jff.2019.103465
Kusumaningsih, T., Asrilya, N. J., Wulandari, S., Wardani, D. R. T., & Fatihin, K. (2015). Reduction on the levels of tannins from Stevia rebaudiana extract using activated carbon. ALCHEMY Jurnal Penelitian Kimia, 11(1), 81. https://doi.org/10.20961/alchemy.v11i1.111
Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Kong, A. H. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121–1132. https://doi.org/10.1016/j.foodchem.2011.11.140
Mantovaneli, I. C. C., Ferretti, E. C., Simões, M. R., & Ferreira Da Silva, C. (2004). The effect of temperature and flow rate on the clarification of the aqueous stevia-extract in a fixed-bed column with zeolites. Brazilian Journal Chemical Engineering, 21(3), 449–458. https://doi.org/10.1590/S0104-66322004000300009
Noor, E., & Isdianti, F. (2007). Ultrafiltrasi aliran silang untuk pemurnian gula stevia purification of stevia sweetener by crossflow ultrafiltration. Jurnal Teknologi Industri Pertanian, 21(2), 73–80.
Purkait, M. K., & Radeep, S. (2018). Membrane Technology in Separation Science. CRC Press Taylor & Francis Group.
Reis, M. H. M., Da Silva, F. V., Andrade, C. M. G., Rezende, S. L., Wolf MacIel, M. R., & Bergamasco, R. (2009). Clarification and purification of aqueous stevia extract using membrane separation process. Journal of Food Process Engineering, 32(3), 338–354. https://doi.org/10.1111/j.1745-4530.2007.00219.x
Tomczak, W., & Gryta, M. (2020). Cross-flow microfiltration of glycerol fermentation broths with Citrobacter freundii. Membranes, 10(4). https://doi.org/10.3390/membranes10040067
Wang, J., Zhao, H., Wang, Y., Lau, H., Zhou, W., Chen, C., & Tan, S. (2020). A review of stevia as a potential healthcare product: Up-to-date functional characteristics, administrative standards and engineering techniques. Trends in Food Science and Technology, 103, 264–281. https://doi.org/10.1016/j.tifs.2020.07.023
Wei, S., Du, L., Chen, S., Yu, H., & Quan, X. (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science and Engineering, 15(1), 1–11.
https://doi.org/10.1007/s11783-020-1303-4
Zhang, S., Gao, Y., Liu, Q., Ye, J., Hu, Q., & Zhang, X. (2019). Harvesting of Isochrysis zhanjiangensis using ultrafiltration: Changes in the contribution ratios of cells and algogenic organic matter to membrane fouling under different cross-flow velocities. Algal Research, 41(May), 101567.https://doi.org/10.1016/j.algal.2019.101567
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.