In silico study: molecular docking of SARS-Cov-2 endoribonuclease on active compounds of Gmelina arborea Roxb. bark

Authors

  • Shobiroh Nuur'Alimah IPB University
  • Agnia Nurul Jannati IPB University
  • Laksmi Ambarsari IPB University
  • Syamsul Falah IPB University

DOI:

https://doi.org/10.22302/iribb.jur.mp.v92i1.561

Keywords:

antioxidant, COVID-19, in silico, NendoU

Abstract

Infection by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) triggers COVID-19 disease of the respiratory tract similar to pneumonia. The virus encodes four structural proteins and 16 non-structural proteins (nsp), one of which includes nsp15 or endoribonuclease (NendoU). NendoU plays an important role in viral replication and transcription and reduces the stimulation of immune cell responses. Active compounds in Gmelina arborea Roxb. bark have antioxidant properties that can inhibit the NendoU activity of SARS-CoV-2. This study aims to analyze the potential of compounds from Gmelina arborea Roxb. bark in inhibiting SARS-CoV-2 NendoU within in silico using the YASARA structure application. Balnophonin is the best test ligand based on binding ΔG value, dissociation constant (Kd), prediction of physicochemical characteristics, pharmacokinetics, and toxicity. Therefore, balanophonin can be developed as an effective alternative drug to inhibit SARS CoV-2 NendoU.

Downloads

Download data is not yet available.

Author Biography

Laksmi Ambarsari, IPB University

Biokimia

References

Aditia, A. (2021). Covid-19: Epidemiologi, virologi, penularan, gejala klinis, diagnosa, tatalaksana, faktor risiko dan pencegahan. Jurnal Penelitian Perawat Profesional, 3(4), 653-660. https://doi.org/10.37287/jppp.v3i4.574

Agistia, D. D., Purnomo, H., Tegar, M., Nugroho, A. E. (2013). Interaksi senyawa aktif dari Aegle marmelos correa sebagai anti inflamasi dengan reseptor COX-1 dan COX-2. Traditional Medicine Journal, 18(2), 80-87. https://doi.org/ 10.22146/tradmedj.7983

Ahmed, S., Rakib, A., Islam, M. A., Khanam, B. H., Faiz, F. B., Paul, A., Chy, M. N., Bhuiya, N. M., Uddin, M. M., Ullah, S. M., Rahman, M. A., & Emran, T. B. (2019). In vivo and in vitro pharmacological activities of Tacca integrifolia rhizome and investigation of possible lead compounds against breast cancer through in silico approaches. Clinical Phytoscience, 5(1), 1-13. https://doi.org/10.1186/s40816-019-0127-x

Alimah, S., N., Sumaryada, T., I., Nurcholis, W., Ambarsari, L. (2022). Molecular docking study of IPBCC.08.610 glucose oxidase mutant for increasing gluconic acid production. JKSA, 25(5), 169-178. https://doi.org/10.14710/jksa. 25.5.169-178

Amirian, E., S. and Levy, J., K. (2020). Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as herapeutic options for coronaviruses. One Health, 9, 1-7. https: //doi.org/10.1016/j.onehlt.2020.100128

Arief, A., Bialangi, M., S., Tureni, D. (2018). The level of knowledge about the dangers of smoking in students of SMP Negeri 15 Palu. Journal of Biological Science and Education, 6(2), 358-363. https://jurnal.fkip.untad.ac.id/index.php/ ejipbiol/article/download/1060/967

Arwansyah, Ambarsari L., Sumaryada T.I. (2014). Simulasi docking senyawa kurkumin dan analognya sebagai inhibitor reseptor androgen pada kanker prostat. Current Biochemistry, 1(11), 11-19. doi: 10.29244/cb.1.1.11-19.

Boopathi, S., Poma, A., B., Kolandaivelc, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 3409-3418. https://doi.org/10.1080/07391102.2020.1758788

Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S., M., Savidge, T., C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), 1-16. https://doi.org/10.1126/sciadv.1501240

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P., W., Tang, Y. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099-3105 https://doi.org/ 10.1021/ci300367a

Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecu-les. Scientific Reports, 7(42717), 1-13. https: //doi.org/10.1038/srep42717

Daniel, N., Ferdinand, F., Aditya, P. A. (2023). In silico targeting CYP51 of Naegleria fowleri using bioactive compounds from Indonesian plants. Journal of Pharmacy & Pharmacognosy Research, 11(5), 841-862. https://doi.org/ 10.56499/jppres23.1693_11.5.841

Deng, X., van Geelen, A., Buckley, A. C., O'Brien, A., Pillatzki, A., Lager, K. M., Faaberg, K. S., & Baker, S. C. (2019). Coronavirus endoribo-nuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. Journal of virology, 93(8), e02000-18. https://doi.org/10.1128/JVI.02000-18

Dickson, C., J., Vega, C., V., Duca, J., S. (2020). Revealing molecular determinants of hERG blocker and activator binding. Journal of Chemical Information and Modeling, 60(1), 192-203. doi.org/10.1021/acs.jcim.9b00773

Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein-ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(144), 1-34. https:// doi.org/10.3390/ijms17020144

Falah, S., Katayama, T., & Suzuki, T. (2008). Chemical constituent from Gmelina arborea bark and their antioxidant activity. Journal of Wood Science, 54, 483-489. https:// doi.org/10.1007/s10086-008-0983-3

Fedoreyev, S., A., Krylova, N., V., Mishchenko, N., P., Vasileva, E., A., Pislyagin, E., A., Lunikhina, O., V., Lavrov, V., F., Svitich, O., A., Ebralidze, L., K., Leonova, G., N. (2018). Antiviral and antioxidant properties of echinochrome A. Marine Drugs, 16(12), 509-519. https:// doi.org/10.3390/md16120509

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444-457. https://doi.org/10.1007/s10593-014-1496-1

Handayani, D., Hadi, D. R., Isbaniah, F., Burhan, E., & Agustin, H. (2020). Penyakit virus corona 2019. Jurnal Respirologi Indonesia, 40(2), 119-129. https://doi.org/10.36497/jri.v40i2.101

Hanif, A. U., Lukis, P. A., & Fadlan, A. (2020). Pengaruh minimisasi energi MMFF94 dengan MarvinSketch dan Open Babel PyRx pada penambatan molekular turunan oksindola tersubtitusi. Alchemy. Journal of Chemistry, 8(2), 33-40. https://doi.org/10.18860/al.v8i2. 10481

Ishikawa, T., Hirano, H., Saito, H., Sano, K., Ikegami, Y., Yamaotsu, N., & Hirono, S. (2012). Quantitative structure-activity relationship (QSAR) analysis to predict drug-drug interactions of ABC transporter ABCG2. Mini reviews in medicinal chemistry, 12(6), 505–514. https://doi.org/10.2174/138955712800493825

Ivanov, S. M., Lagunin, A. A., Rudik, A. V., Filimonov, D. A., & Poroikov, V. V. (2018). ADVERPred-web service for prediction of adverse effects of drugs. Journal of Chemical Information and Modeling, 58(1), 8–11. https://doi.org/10.1021/acs.jcim.7b00568

Khan, M. T., Irfan, M., Ahsan, H., Ahmed, A., Kaushik, A. C., Khan, A. S., Chinnasamy, S., Ali, A., Wei, D. Q. (2021). Structures of SARS-CoV-2 RNA-binding proteins and theurapetic targets. Intervirology, 64, 55-68. https://doi.org/ 10.1159/000513686

Kim, Y., Wower, J., Maltseva, N., Chang, C., Jedrzejczak, R., Wilamowski, M., Kang, S., Nicolaescu, V., Randall, G., Michalska, K., Joachimiak. (2021). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARSCoV-2. Communication Biology, 4(193), 1-11. https://doi.org/10.1038/ s42003-021-01735-9

Kish, T., & Uppal, P. (2016). Trifluridine/tipiracil (lonsurf) for the treatment of metastatic colorectal cancer. Pharmacy and Therapeu-tics, 41(5), 314-325.

Krieger, E. (2017). YASARA Science Manual. Krumbarch (DE): Frick Digitaldruck.

Krivák, R., and Hoksza, D. (2018). P2Rank: machine learning-based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Chem-informatics, 10(39), 1-12. https://doi.org/10. 1186/s13321-018-0285-8

Lagorce, D., Douguet, D., Miteva, M. A., Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein inter-action inhibitors. Scientific Reports, 7(46277), 1-15. https://doi.org/10.1038/srep46277

Laskowski, R., A., Swindells, M., B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. https://doi.org/10.1021/ci200227u

Lipinski, C., A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007

Lipinski, C., A., Lombardo, F., Dominy, B., W., Feeney, P., J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1), 3-26. https://doi.org/10.1016/ s0169-409x(00)00129-0

Mandilara, G., Koutsi, M. A., Agelopoulos, M., Sourvinos, G., Beloukas, A., Rampias, T. (2021). The role of coronavirus RNA-processing enzymes in innate immune evasion. Life. 11(571), 1-17. https://doi.org/10.3390/life 11060571

Marilia, V., Rusdi, B., & Fakih, T. M. (2021). Uji aktivitas senyawa apigenin dan turunannya terhadap reseptor beta-1 adrenergik sebagai antihipertensi secara in silico. Farmasi, 7(2), 406-415. dx.doi.org/10.29313/.v0i0.29329

Noviardi, H., and Fachrurrazie. (2015). Potensi senyawa bullatalisin sebagai inhibitor protein leukotriene A4 hidrolase pada kanker kolon secara in silico. Fitofarmaka, 5(2), 65-73. https://doi.org/10.33751/jf.v5i2.410

Noviardi, H., Masaenah, E., Ramadhan, R. (2020). Penapisan molekular kandidat obat sintetik tuberkulosis terhadap protein tirosin kinase Mycobacterium tuberculosis. Jurnal Farmamedika, 5(2), 60-69. https://doi.org/ 10.47219/ath.v5i2.104

Nusantoro, Y. R., and Fadlan, A. (2020). Analisis sifat mirip obat, prediksi ADMET, dan penambatan molecular isatinili-2-amniobezoil-hidrazon dan kompleks logam transisi Co(II), Ni(II), Cu(II), Zn(II) terhadap BCL2-XL. Akta Kimindo, 5(2), 114-126. http://dx.doi.org/10. 12962/j25493736.v5i2.788

Pannindriya, P., Safithri, M., & Tarman, K. (2021). Analisis in silico senyawa aktif Spirulina platensis sebagai inhibitor tyrosinase. JPHPI, 24(1), 70-77. https://doi.org/10.17844/jphpi. v24i1.33122

Parikesit, A. A., Nurdiansyah, R. (2021). Natural products repurposing of the H5N1-based lead compounds for the most fit inhibitors against 3C-like protease of SARS-CoV-2. Journal of Pharmacy and Pharmacognosy Research, 9(5), 730-745. https://doi.org/10.56499/jppres21.10 80_9.5.730

Petit, J., Meurice, N., Kaiser, C., Maggiora, G. (2012). Softening the rule of five-where to draw the line?. Bioorganic and Medicinal Chemistry, 20, 5343-5351. https://doi.org/ 10.1016/j.bmc.2011.11.064

Pires, D., E., V., Blundell, T., L., Ascher, D., B. (2015). pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/ acs.jmedchem.5b00104

Prasetiawati, R., Suherman, M., Permana, B., Rahmawati. (2021). Molecular docking study of anthocyanidin compounds against Epidermal Growth Factor Receptor (EGFR) as anti-lung cancer. IJPST, 8(1), 8-20. https://doi.org/ 10.24198/ijpst.v8i1.29872

Rocheleau, A. D., Cao, T. M., Takitani, T., King, M. R. (2016). Comparison of human and mouse e-selectin binding to siayl-lewis. BMC Structural Biology, 16(10), 1-10. https://doi.org/10.1186/ s12900-016-0060-x

Schrödinger, L. L. C., DeLano, W. (2021). PyMOL. http://www.pymol.org/pymol.

Septiana, E. (2020). Prospek senyawa bahan alam sebagai antivirus dalam menghambat SARS-CoV-2. BioTrends, 11(1), 30-38.

Siagian, I., J., Purnomo, H., Ediati, S. (2022). Study in silico compounds in sea cucumbers as immunomodulators. JPS, 5(1), 33-41. https://doi.org/10.36490/journal-jps.com.v5i1.9 9

Susanti, N. M. P., Laksmiani, N. P. L., Noviyanti, N. K. M., Arianti, K. M., & Duantara, I. K. (2019). Molecular docking terpinen-4-ol sebagai antiinflamasi pada aterosklerosis secara in silico. Jurnal Kimia, 13(2), 221-228. https://doi.org/ 10.24843/JCHEM.2019.v13.i02.p16

Syahputra, G., Ambarsari, L., Sumaryada, T. (2014). Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim 12-lipoksigenase. Jurnal Biofisika, 10(1), 55 – 67.

Tallei, T., E., Tumilaar, S., G., Niode, N., J., Fatimawali, Kepel, B., J., Idroes, R., Effendi, Y., Sakib, S., A., Emran, T., B. (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica, (6307457), 1-18. https://doi.org/ 10.1155/2020/6307457

Downloads

Submitted

08-12-2023

Accepted

19-04-2024

Published

30-04-2024

How to Cite

Shobiroh Nuur’Alimah, Agnia Nurul Jannati, Ambarsari, L., & Syamsul Falah. (2024). In silico study: molecular docking of SARS-Cov-2 endoribonuclease on active compounds of Gmelina arborea Roxb. bark. Menara Perkebunan, 92(1), 70–81. https://doi.org/10.22302/iribb.jur.mp.v92i1.561