Cloning and expression study of sugarcane (Saccharum sp.) sucrose transporter gene (SoSUT4)
DOI:
https://doi.org/10.22302/iribb.jur.mp.v92i2.584Keywords:
brix, relative expression, SoSUT4 sequenceAbstract
Sugarcane (Saccharum sp.) is a vital commodity for global sugar production and biomass generation, with sucrose being the primary sugar accumulated predominantly in the stem. The sucrose transporter protein is essential in facilitating sucrose transport across cells and over long distances within plants, from source to sink tissues. This study focused on the cloning and expression analysis of the SoSUT4 gene in the Bululawang sugarcane variety. A partial coding sequence of SoSUT4, comprising 802 nucleotides and encoding a 267-amino acid protein, was successfully cloned and sequenced. Sequence analysis revealed that the SoSUT4 protein shares high similarity with other SUT4 proteins in monocotyledonous plants, particularly with Saccharum spontaneum and Saccharum hybrid. Bioinformatics predictions indicated that the SoSUT4 protein is localized to the plasma membrane and contains six transmembrane helices. Gene expression analysis further demonstrated that SoSUT4 expression was significantly higher in the middle internodes of the stem compared to the youngest midsection of the leaves. This expression pattern correlates with higher sucrose accumulation in the stem, as reflected by elevated Brix levels in the stem (19.61%) compared to the leaves (19.48%). This finding suggests that SoSUT4 is essential for sucrose translocation to the stem, which serves as the primary storage site for sugar. The study provides valuable insights into the SoSUT gene family in sugarcane, particularly highlighting the role of SoSUT4 in sugar transport and accumulation. Future research should further investigate the underlying mechanisms of SoSUT4 and related genes to enhance our understanding of their impact on sugarcane yield, with potential applications for genetic engineering aimed at improving crop productivity.
[Keywords: brix, relative expression, SoSUT4]
Downloads
References
Aoki, N., Hirose, T., Scofield, G. N., Whitfield, P. R., & Furbank, R. T. (2003). The sucrose transporter gene family in rice. Plant Cell Physiology, 44(3), 223–232. https://doi.org/10.1093/pcp/pcg030
Ardiyansyah, B., & Purwono, D. (2015). Mempelajari pertumbuhan dan produktivitas tebu (Saccharum officinarum. L) dengan masa tanam sama pada tipologi lahan berbeda. Buletin Agrohorti, 3(3), 357–365.
Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. In Science (Vol. 294, Issue 5540, pp. 93–96). https://doi.org/10.1126/science.1065659
Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). Statistics for Experimenters: Design, Innovation, and Discovery (Second Edition). John Wiley and Sons Incorporation.
Brandt, G. S. (2015). Molecular Life Sciences. Springer New York.
Chincinska, I., Gier, K., Krügel, U., Liesche, J., He, H., Grimm, B., Harren, F. J. M., Cristescu, S. M., & Kühn, C. (2013). Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00026
Conradie, T. T. (2011). Genetic engineering of sugarcane for increased sucrose and consumer acceptance. Institute for Plant Biotechnology.
Deol, K. K., Mukherjee, S., Gao, F., Brûlé-babel, A., Stasolla, C., & Ayele, B. T. (2013). Identification and characterization of the three homologs of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 13, 181. https://doi.org/10.1186/1471-2229-13-181
Donzella, L., Sousa, M. J., & Morrissey, J. P. (2023). Evolution and functional diversification of yeast sugar transporters. Essays Biochemistry, 67(5), 811–827. https://doi:10.1042/EBC20220233
Egbert, J., & Plonsky, L. (2020). A Practical Handbook of Corpus Linguistics. Springer International Publishing.
Elofsson, A., & Von-Heijne, G. (2007). Membrane protein structure: prediction versus reality. Annual Review of Biochemistry, 76, 125–140. https://doi.org/10.1146/annurev.biochem.76.052705.163539
ElSayed, A. I., Weig, A. R., Sariyeva, G., Hummel, E., Yan, S. L., Bertolini, A., & Komor, E. (2013). Assimilate export inhibition in sugarcane yellow leaf virus-infected sugarcane is not due to less transcripts for sucrose transporters and sucrose-phosphate synthase or to callose deposition in sieve plates. Physiological and Molecular Plant Pathology, 81, 64–73. https://doi.org/10.1016/j.pmpp.2012.11.003
Endler, A., Meyer, S., Schelbert, S., Schneider, T., Weschke, W., Peters, S. W., Keller, F., Baginsky, S., Martinoia, E., & Schmidt, U. G. (2006). Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology, 141(1), 196–207. https://doi.org/10.1104/pp.106.079533
Gamage, D. G., Gunaratne, A., Periyannan, G. R., & Russell, T. G. (2019). Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letter, 26(5), 339–347. https://doi/org/10.2174/0929866526666190228144219
Hagos, H., Mengistu, L., & Mequanint, Y. (2014). Determining optimum harvest age of sugarcane cultivars on the newly establishing sugar project in the tropical areas of Tendaho, Ethiopia. Advances in Crop Science and Technology, 2(5). https://doi.org/10.4172/2329-8863.1000156
Harisutji, W. (2001). Analisis Kuantitatif Brix dan Pol Nira Tebu. Pusat Penelitian Perkebunan Gula Indonesia.
Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics, 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
Ho, B. K., & Brasseur, R. (2005). The Ramachandran plots of glycine and pre-proline. BMC Structural Biology, 5. https://doi.org/10.1186/1472-6807-5-14
Ibrahim, K. S., Gurusubramanian, G., Zothansanga, Yadav, R. P., Senthil, K. N., Pandian, S. K., Borah, P., & Mohan, S. (2017). Bioinformatics (A Student’s Companion). Springer Singapore. https://doi.org/10.1007/978-981-10-1857-2
Jisna, V. A., & Jayaraj, P. B. (2021). Protein structure prediction: conventional and deep learning perspectives. Protein Journal, 40(4):522–544. https://10.1007/s10930-021-10003-y
Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Cabios, 8(3), 275–282. http://bioinformatics.oxfordjournals.org/
Junaidin, Chaerani, S., & Husniah Fadla, N. (2019). Studi homology modeling enzim tirosinase (Homo sapiens) dengan menggunakan Swiss-Model. Jurnal Farmagazine, 6(1), 1. https://doi.org/10.47653/farm.v6i1.125
Kahsay, R. Y., Gao, G., & Liao, L. (2005). An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics, 21(9), 1853–1858. https://doi/org/10.1093/bioinformatics/bti303
Kariya, K., Sameeullah, M., Sasaki, T., & Yamamoto, Y. (2017). Overexpression of the sucrose transporter gene NtSUT1 alleviates aluminum-induced inhibition of root elongation in tobacco (Nicotiana tabacum L.). Soil Science and Plant Nutrition, 63(1), 45–54. https://doi.org/10.1080/00380768.2017.1283646
Khan, Q., Qin, Y., Guo, D. J., Yang, L. T., Song, X. P., Xing, Y. X., & Li, Y. R. (2023). A review of the diverse genes and molecules involved in sucrose metabolism and innovative approaches to improve sucrose content in sugarcane. Agronomy, 13(12). https://doi/org/10.3390/agronomy13122957.
Krogh, A., Larsson, B., Von-Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
Leach, K. A., Tran, T. M., Slewinski, T. L., Meeley, R. B., & Braun, D. M. (2017). Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 59(6), 390–408. https://doi.org/10.1111/jipb.12527
Leggewie, G., Kolbe, A., Lemoine, R., Roessner, U., Lytovchenko, A., Zuther, E., Kehr, J., Frommer, W. B., Riesmeier, J. W., Willmitzer, L., & Fernie, A. R. (2003). Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta, 217, 158–167. https://doi.org/10.1007/s00425-003-0975-x
Li, F., Wu, B., Qin, X., Yan, L., Hao, C., Tan, L., & Lai, J. (2014). Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene, 546(2), 336–341. https://doi.org/10.1016/j.gene.2014.05.056
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Malik, M. A. (2024). Introduction to Organic and Biochemistry. Hampton University.
Mehdi, F., Galani, S., Wickramasinghe, K. P., Zhao, P., Lu, X., Lin, X., Xu, C., Liu, H., Li, X., & Liu, X. (2024). Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e27277
McRaeA, S. R., Christopher, J. T., Smith, J. A. C., & Holtum, J. A. M. (2002). Sucrose transport across the vacuolar membrane of Ananas comosus. Functional Plant Biology, 29, 717–724. https://doi.org/10.1071/PP01227
Milne, R. J., Byrt, C. S., Patrick, J. W., & Grof, C. P. L. (2013). Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Frontiers in Plant Science, 4, 223. https://doi.org/10.3389/fpls.2013.00223
Najibi, S. M., Maadooliat, M., Zhou, L., Huang, J. Z., & Gao, X. (2017). Protein structure classification and loop modeling using multiple Ramachandran distributions. Computational and Structural Biotechnology Journal, 15, 243–254. https://doi.org/10.1016/j.csbj.2017.01.011
Nehete, J., Bhambar, R., Narkhede, M., & Gawali, S. (2013). Natural proteins: sources, isolation, characterization and applications. Pharmacognosy Reviews, 7(14), 107–116. https://doi.org/10.4103/0973-7847.120508
Niu, J. Q., Huang, J. L., Phan, T. T., Pan, Y. B., Yang, L. T., & Li, Y. R. (2019). Molecular cloning and expressional analysis of five sucrose transporter (SUT) genes in sugarcane. Sugar Tech, 21(1), 47–54. https://doi.org/10.1007/s12355-018-0623-1
Peng, Q., Cai, Y., Lai, E., Nakamura, M., Liao, L., Zheng, B., Ogutu, C., Cherono, S., & Han, Y. (2020). The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02406-3
Petrey, D., Honig, B. (2005). Protein structure prediction: inroads to biology. Molecular Cell, 20(6), 811–819. https://10.1016/j.molcel.2005.12.005
Pua, E. C., & Davey, M. R. (2010). Plant Developmental Biology - Biotechnological Perspectives: Volume 2. Springer-Verlag.
Punta, M., Ofran, Y. (2008). The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Computational Biology, 4(10). https://doi:10.1371/journal.pcbi.1000160
[Pusdatin] Pusat Data dan Sistem Informasi Pertanian. (2022). Outlook Komoditas Perkebunan Tebu. Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal Kementerian Pertanian.
Putri, C. A., Soegiharto, B., & Dewanti, P. (2020). Overexpression of sugarcane sucrose transport 1 (SoSUT1) gene increases rice yield. Annales Bogorienses, 24(1), 18–26. http://dx.doi.org/10.14203/ann.bogor.2020.v24.n1.18-26
Rae, A. L., Grof, C. P. L., Casu, R. E., & Bonnett, G. D. (2005). Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crops Research, 92(2-3), 159–168. https://doi.org/10.1016/j.fcr.2005.01.027
Reddy, V. S., Shlykov, M. A., Castillo, R., Sun, E. I., & Saier, M. H. (2012). The major facilitator superfamily (MFS) revisited. FEBS Journal, 279(11), 2022–2035. https://doi.org/10.1111/j.1742-4658.2012.08588.x
Reeb, J., & Rost, B. (2018). Secondary structure prediction. In S. Ranganathan, M. Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809633-8.20267-7
Reinders, A., Sivitz, A. B., Starker, C. G., Gantt, J. S., & Ward, J. M. (2008). Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Molecular Biology, 68(3), 289–299. https://doi.org/10.1007/s11103-008-9370-0
Rekik, I., Chaabene, Z., Grubb, C. D., Drira, N., Cheour, F., & Elleuch, A. (2015). In silico characterization and Molecular modeling of double-strand break repair protein MRE11 from Phoenix dactylifera v deglet nour. Theoretical Biology and Medical Modelling, 12(1). https://doi.org/10.1186/s12976-015-0013-2
Sachdeva, M., Bhatia, S., & Batta, S. K. (2011). Sucrose accumulation in sugarcane: a potential target for crop improvement. Acta Physiologiae Plantarum, 33(5), 1571–1583. https://doi/org/10.1007/s11738-011-0741-9
Sauer, N. (2007). Molecular physiology of higher plant sucrose transporters. FEBS Letters, 581, 2309–2317. https://doi.org/10.1016/j.febslet.2007.03.048
Saxena, P., Srivastava, R., & Sharma, M. (2010). Studies on salinity stress tolerance in sugarcane cultivars. Sugar Tech. 12(1), 59–63. https://doi.org/10.1007/s12355-010-0011-y
Schneider, S., Hulpke, S., Schulz, A., Yaron, I., Höll, J., Imlau, A., Schmitt, B., Batz, S., Wolf, S., Hedrich, R., & Sauer, N. (2012). Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biology, 14(2), 325–336. https://doi.org/10.1111/j.1438-8677.2011.00506.x
Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., & Ragg, T. (2006). The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology, 7. https://doi.org/10.1186/1471-2199-7-3
Schulz, A., Beyhl, D., Marten, I., Wormit, A., Neuhaus, E., Poschet, G., Büttner, M., Schneider, S., Sauer, N., & Hedrich, R. (2011). Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant Journal, 68(1), 129–136. https://doi.org/10.1111/j.1365-313X.2011.04672.x
Schulze, W. X., Reinders, A., Ward, J., Lalonde, S., & Frommer, W. B. (2003). Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochemistry. 4(3). https://doi.org/10.1186/1471-2091-4-3
Sivitz, A. B., Reinders, A., & Ward, J. M. (2008). Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiology, 147(May), 92–100. https://doi.org/10.1104/pp.108.118992
Subiyakto, Sulistyowati, E., Heliyanto, B., Purwati, R. D., Yulianti, T., Djumali, & Fatah, G. S. A. (2016). Bunga Rampai Peningkatan Produktivitas Tebu untuk Mempercepat Swasembada Gula. IAARD Press.
Sun, A., Dai, Y., Zhang, X., Li, C., Meng, K., Xu, H., Wei, X., Xiao, G., Ouwerkerk, P. B. F., Wang, M., & Zhu, Z. (2011). A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M. Journal of Integrative Plant Biology, 53(7), 586–595. https://doi.org/10.1111/j.1744-7909.2011.01063.x
Supriyadi, Diana, N., & Djumali, D. (2018). Pertumbuhan dan produksi tebu (Saccharum officinarum; Poaceae) pada berbagai paket pemupukan di lahan kering berpasir. Berita Biologi, 17(2), 91–223.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Terzi, F. S. P., Rocha, F. R., Vêncio, R. Z. N., Felix, J. M., Branco, D. S., Waclawovsky, A.J., Del-Bem, L. E. V., Lembke, C. G., Costa, M. D. L., Nishiyama, M. Y., & et al. (2009). Sugarcane genes associated with sucrose content. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-120
Urgesa, G. D., & Keyata, E. O. (2021). Effect of harvesting ages on yield and yield components of sugar cane cultivars cultivated at Finchaa sugar factory, Oromia, Ethiopia. International Journal of Food Science. https://doi/org/10.1155/2021/2702095
Wang, D., Liu, H., Wang, H., Zhang, P., & Shi, C. (2020). A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02382-8
Wang, L. F., Qi, X. X., Huang, X. S., Xu, L. L., Jin, C., Wu, J., & Zhang, S. L. (2016). Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. Plant Physiology and Biochemistry, 105, 150–161. https://doi.org/10.1016/j.plaphy.2016.04.019
Wang, L., Zheng, Y., Ding, S., Zhang, Q., Chen, Y., & Zhang, J. (2017). Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology, 17(109). https://doi.org/10.1186/s12870-017-1052-0
Wang, Y., Zhang, H., Zhong, H., & Xue, Z. (2021). Protein domain identification methods and online resources. In Computational and Structural Biotechnology Journal (Vol. 19, pp. 1145–1153). Elsevier B.V. https://doi.org/10.1016/j.csbj.2021.01.041
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., & et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303. https://doi.org/10.1093/nar/gky427
Wening, O. P., & Kuswurjanto, R. (2023). Karakteristik dan performa nira tebu berdasarkan perbedaan varietas dan waktu umur tebang di kebun percobaan P3GI Pasuruan. Indonesian Sugar Research Journal, 3(2), 72–86. https://doi.org/10.54256/isrj.v3i2.113
Wilfinger, W. W., Mackey, K., & Chomczynski, P. (1997). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques, 22, 474–481. https://doi.org/10.2144/97223st01
Yan, N. (2013). Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences, 38(3), 151–159. https://doi.org/10.1016/j.tibs.2013.01.003
Yang, Z., Liu, Y., Han, H., Ren, C., Liu, S., Long, J., & Peng, C. (2018). Cloning, expression, and localization analysis of the sucrose transporter gene JcSUT4 in the biofuel plant Jatropha curcas. Journal of Forest Research, 23(5), 297–303. https://doi.org/10.1080/13416979.2018.1506249
Zhang, Q., Hu, W., Zhu, F., Wang, L., Yu, Q., Ming, R., & Zhang, J. (2016). Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2419-6
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rani Nur Fitriani, Dwi Andreas Santosa, Miftahudin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.