Callus induction and regeneration of date palm (Phoenix dactylifera L.) cv. Zambli through somatic embryogenesis from four layers of young leaves explant
DOI:
https://doi.org/10.22302/iribb.jur.mp.v92i2.588Keywords:
2,4-D, embryogenic callus, in vitro propagationAbstract
The Zambli variety of date palm shows potential for cultivation in tropical regions, as its fruits are edible during the Rutab stage. However, large-scale production of Zambli seedlings presents a significant challenge. In vitro propagation offers a solution for producing large quantities of clonal planting material. This study focuses on inducing callus formation from the four-layered shoot tips of young leaves and regenerating these calli into plantlets through somatic embryogenesis. Explants were cultured on a modified MS medium with 10, 50, or 100 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D), combined with 1 or 3 mg L-1 N6-(2-isopentenyl)adenine (2-iP). Embryo maturation was performed on the same medium without 2,4-D, while a hormone-free medium was used for plantlet regeneration. The results indicated that the highest callus induction occurred from the younger leaf layer (layer 1) in the medium containing 100 mg L-1 2,4-D and 1 mg L-1 2-iP, achieving a callus formation rate of 82.3%. Successful callus induction was achieved from the first, second, and third layers of young leaves. Somatic embryo maturation and plantlet regeneration were also completed, producing vigorous, well-rooted plantlets. Additionally, the development of date palm cv. Zambli in vitro culture through somatic embryogenesis was confirmed through histological analysis.
Downloads
References
Abass, M. H., Al-Utbi, S. D., & Al-Samir, E. A. R. H. (2017). Genotoxicity assessment of high concentrations of 2,4-D, NAA and Dicamba on date palm callus (Phoenix dactylifera L.) using protein profile and RAPD markers. Journal of Genetic Engineering and Biotechnology, 15(1), 287–295. https://doi.org/10.1016/j.jgeb.2016. 12.003
Al-Alawi, R. A., Al-mashiqri, J. H., Al-nadabi, J. S. M., & Al-shihi, B. I. (2017). Date palm tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. 8, 1–12. https://doi.org/ 10.3389/fpls.2017.00845
Al-Khayri, J. (2007). Date palm Phoenix dactylifera L. micropropagation. In S. Jain & H. Haggman (Eds.), Protocols for Micropropagation of Woody Trees and Fruits (pp. 509–526). Springer International Publishing. https://link.springer. com/chapter/10.1007/978-1-4020-6352-7_46
Al-Khayri, J. M. (2012). Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emirates Journal of Food and Agriculture, 24(5), 444–455.
Al-Khayri, J. M. & Naik, P. M. (2017). Micropropagação de tamareira: Avanços e aplicações. Ciencia e Agrotecnologia, 41(4), 347–358. https://doi.org/10.1590/1413-70542 017414000217
Al-Mahmoud, M. E., Al-Dous, E. K., Al-Azwani, E. K., & Malek, J. A. (2012). DNA-based assays to distinguish date palm (arecaceae) gender. American Journal of Botany, 99(1), 7–10. https://doi.org/10.3732/ajb.1100425
Amine Mazri, M., & Meziani, R. (2015). Micropropagation of date palm: A Review. Cell & Developmental Biology, 04(03), 3–7. https://doi.org/10.4172/2168-9296.1000160
Bekheet, S. (2013). Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Scientia Agriculturae, 4(3), 85–92.
Bhatia, S., & Bera, T. (2015). Somatic embryogenesis and organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802221-4.00 006-6
Bortesi, L. & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006
Boufis, N., Khelifi-Slaoui, M., Djillali, Z., Zaoui, D., Morsli, A., Bernards, M. A., Makhzum, A., & Khelifi, L. (2014). Effects of growth regulators and types of culture media on somatic embryogenesis in date palm (Phoenix dactylifera L. cv. Degla Beida). Scientia Horticulturae, 172, 135–142. https://doi.org/10.1016/j.scienta.2014. 04.001
BPS. (2022). Impor: Statistik Perdagangan Luar Negeri. Badan Pusat Statistik, Indonesia.
Chao, C. C. T. & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience, 42(5), 1077–1082. https://doi.org/10.21273/ hortsci.42.5.1077
Cherif, E., Zehdi, S., Castillo, K., Chabrillange, N., Abdoulkader, S., Pintaud, J. C., Santoni, S., Salhi-Hannachi, A., Glémin, S., & Aberlenc-Bertossi, F. (2013). Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytologist, 197(2), 409–415. https://doi.org/ 10.1111/nph.12069
Donmez, D., Simsek, O., Izgu, T., Aka Kacar, Y., & Yalcin Mendi, Y. (2013). Genetic transformation in citrus. The Scientific World Journal, 2013. https://doi.org/10.1155/ 2013/491207
Eke, C. R., Akomeah, P., & Asemota, O. (2005). Somatic embryogenesis in date palm (Phoenix dactylifera L.) from apical meristem tissues from “zebia” and “loko” landraces. African Journal of Biotechnology, 4(3), 244–246.
Elmeer, K. & Mattat, I. (2012). Marker-assisted sex differentiation in date palm using simple sequence repeats. 3 Biotech, 2(3), 241–247. https://doi.org/10.1007/s13205-012-0052-x
Gurra_Down. (2022). Field trial date palm. https://www.gurradowns.com.au/field-trial-date-palms
Hashim A. T., Ishak, Z., Rosli, S. K., Ong-Abdullah, M., Ooi, S. E., Husri, M. N., & Bakar, D. A. (2018). Step wise protocols for somatic embryogenesis of important woody plants. Chapter 18 Oil Palm (Elaeis guineensis Jacq.) Somatic Embryogenesis (Vol. 85). Springer International Publishing. https://doi.org/10. 1007/978-3-319-79087-9
Idowu, A. T., Igiehon, O. O., Adekoya, A. E., & Idowu, S. (2020). Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications. AIMS Agriculture and Food, 5(4), 734–755. https://doi.org/ 10.3934/agrfood.2020.4.734
le Roux, M. L., Botha, A. M., & van der Vyver, C. (2016). Somatic embryogenesis and cryopreservation of South African bread wheat (Triticum aestivum L.) genotypes. South African Journal of Botany, 106, 78–88. https://doi.org/ 10.1016/j.sajb.2016.05.018
Marbun, C. L. M., Toruan-Mathius, N., Reflini, Utomo, C., & Liwang, T. (2015). Micropropagation of embryogenic callus of oil palm (Elaeis guineensis Jacq.) using temporary immersion system. Procedia Chemistry, 14, 122–129. https://doi.org/10.1016/ j.proche. 2015.03.018
Martínez, M. T., Suárez, S., Moncaleán, P., & Corredoira, E. (2022). Cryopreservation of holm oak embryogenic cultures for long-term conservation and assessment of polyploid stability. Plants, 11(9), 1–16. https://doi.org/ 10.3390/plants11091266
Mazri, M. A., Meziani, R., Belkoura, I., Mokhless, B., & Nour, S. (2018). A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul. 3 Biotech, 8(4), 1–8. https://doi.org/ 10.1007/s13205-018-1235-x
Othmani, A., Bayoudh, C., Drira, N., Marrakchi, M., & Trifi, M. (2009). Somatic embryogenesis and plant regeneration in date palm Phœnix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell, Tissue and Organ Culture, 97(1), 71–79. https://doi.org/10.1007/s11240-009-9500-7
Santos, I. R., Maximiano, M. R., Almeida, R. F., da Cunha, R. N. V., Lopes, R., Scherwinski-Pereira, J. E., & Mehta, A. (2018). Genotype-dependent changes of gene expression during somatic embryogenesis in oil palm hybrids (Elaeis oleifera x E. guineensis). PLoS ONE, 13(12), 1–15. https://doi.org/10.1371/journal.pone.02094 45
Saptari, R. T., Sinta, M. M., Riyadi, I., Priyono, P., & Sumaryono, S. (2020). Propagasi in vitro tanaman kurma (Phoenix dactylifera L.) pada bioreaktor dengan perendaman sesaat. Menara Perkebunan, 88(2), 90–99. https://doi.org/10. 22302/iribb.jur.mp.v88i2.394
Saptari, R. T., & Sumaryono, . (2018). Embriogenesis somatik dari pucuk tunas tanaman kurma (Phoenix dactylifera L.). Menara Perkebunan, 86(2), 81–90. https:// doi.org/10.22302/ iribb.jur.mp.v86i2.313
Sidky, R. (2017). Optimized direct organogenesis from shoot tip explants of date palm. Methods in Molecular Biology, 1637, 37–45. https://doi.org/ 10.1007/978-1-4939-7156-5_4
Sinta, M. M., & Amanah, D. M. (2019). Acclimatization and early growth of tissue culture-derived Stevia rebaudiana at low altitude area in Bogor, Indonesia. Menara Perkebunan, 87(1), 68–76. https://doi.org/10.22302/iribb.jur. mp.v87i1.326
Sinta, M. M., Riyadi, I., & Sumaryono. (2018). Somatic embryogenesis of sago palm (Metroxylon sagu Rottb.) from different origins in Indonesia. IOP Conference Series: Earth and Environmental Science, 183(1). https://doi.org/10.1088/1755-1315/183/1/01200 8
Sinta, M., Saptari, R., Riyadi, I., & Sumaryono, S. (2023). Tissue culture of four varieties of date palm grown in Indonesia. IOP Conference Series: Earth and Environmental Science, 1255. https://doi.org/10.1088/1755-1315/1255/1/0120 19
Sudarsono (2020). Kurma ruthob Indonesia bisa jadi peluang bisnis baru. IPB Today, 354. https://biofarmaka.ipb.ac.id/news/2623-tips-ipb-kurma-ruthob-indonesia-bisa-jadi-peluang-bisnis-baru-2020
Taha, R. A., Allam, M. A., Hassan, S. A. M., Bakr, B. M. M., & Hassan, M. M. (2021). Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/ 10.1186/ s43141-021-00115-4
Wehbi, H., Soulhat, C., Morin, H., Bendahmane, A., Hilson, P., & Bouchabké-Coussa, O. (2022). One-Week scutellar somatic embryogenesis in the monocot Brachypodium distachyon. Plants, 11(8). https://doi.org/10.3390/plants11081068
Yin, K., Gao, C., & Qiu, J. L. (2017). Progress and prospects in plant genome editing. Nature Plants, 3(July), 1–6. https://doi.org/10.1038/ nplants.2017.107
Zhao, Y., Williams, R., Prakash, C. S., & He, G. (2012). Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.). BMC Plant Biology, 12(December). https://doi.org/10.1186/1471-2229-12-237
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Masna Maya Sinta, Rizka Tamania Saptari, Imron Riyadi, Sumaryono Sumaryono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.