In silico test of brotowali (Tinospora crispa) as potential anticancer agent targeting mTOR on colorectal cancer
DOI:
https://doi.org/10.22302/iribb.jur.mp.v93i1.595Keywords:
Colorectal cancer, Molecular Docking, Tinospora crispaAbstract
Colorectal cancer is one of the deadliest diseases in the world. Treatment to overcome colorectal cancer has been pursued in such a way. Still, theresults are unsatisfactory, so treatment turns to herbal plants such as brotowali (Tinospora crispa) as an alternative colorectal anticancer. T.crispa is one of the herbal plants that contains a typical compound in the form of N-acetylnornuciferine and alkaloid-derived active compounds in the form ofN-formylanonaine, N- trans-coumaroyltyramine, and Tyramine which are potential as colorectal anticancer agents. The study used the mTOR(Mammalian Target of Rapamycin) receptor with PDB code (4DRJ) with its native ligand, RAP (receptor-associated protein). This study aims to analyze the potential of colorectal anticancer targeted by active compounds of alkaloid derivatives in T.crispa against mTOR. The method used is to explore active compounds through the KnapSack web and 3D protein structures on NCBI, docking validation using PyMol, tethering compounds N-acetylnornuciferine, N-formylanonaine, N-trans-coumaroyltyramine, and Tyramine to the target ligand using Pyrx and then visualized using BIOVIA Discovery Studio Visualizer. Analysis of the in silico test results showed that the compounds of N-acetylnornuciferine, N-trans-coumaroyltyramine, and Tyramine in T.crispa have good potential as colorectal anticancer agents in low doses but are not recommended for people with heart disease.
Downloads
References
Adnan, A.Z., Muhammad, T., Tika, A., Dewi, I.R., & Andani, E.P. (2016). Cytotoxic activity assay of tinocrisposide from Tinospora crispa on human cancer cells. Der Pharmacia Lettre, 8(18), 102-106. http://scholarsresearchlibrary.com/archive.html
Ahmad, W., Jantan, I., & Bukhari, S. N. A. (2016). Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and pharmacological aspects. Frontiers in Pharmacology, 7 (59), 1-19. https://doi.org/10.3389/fphar.2016.00059
Benet, L.Z., Hosey, C.M., Ursu, O., & Oprea, T.I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
Berdigaliyev, N. & Aljofan, M. (2020). An overview of drug discovery and development. Future Medicinal Chemistry, 12(10), 939-947. https://doi.org/10.4155/fmc-2019-0307
Daina, A. & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11, 1117–1121.https://doi.org/10.1002/cmdc.201600182
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scintific Reports, 7(42717),1–13. https://doi.org/10.1038/srep42717
Dany. P., Lattimer. J. M., Prakash. M. & Steiner. A.W. (2013). Stellar Superfluids, Inspire INT- PUB-009.
Dwirosalia, DNS., Yustisia, I., Arsyad, A., Natsir, R., Cangara, M.H., & Patellongi, I. (2021). Studi in-silico: potensi antikanker senyawa turunan kumarin terhadap protein BCL-2. Majalah Farmasi dan Farmakologi, 25(2), 84-87. https://doi.org/10.20956/mff.v25i2.13648
Fadlan, A., Warsito, T., & Sarmoko. (2020). Studi in-silico potensi antikanker senyawa Kaempferida. Alchemy: Journal of Chemistry, 10(1), 14-21. https://doi.org/10.18860/al.v10i1.13317
Francipane, M.G. & Lagasse, E. (2014). mTOR pathway in colorectal cancer: an update. Oncotarget, 5(1), 49-66. https://doi.org/10.18632/oncotarget.1548
Frimayanti, N., Lukman, A., & Nathania, L. (2021). Studi molecular docking senyawa 1,5- benzothiazepine sebagai inhibitor dengue DEN-2 NS2B/NS3 serine protease. Chempublish Journal, 6 (1), 54-62. https://doi.org/10.22437/chp.v6i1.12980
Gari, S.B., Nelson, V.K., & Peraman, R. (2023). Tinospora sinensis (Lour.) Merr alkaloid rich extract induces colon cancer cell death via ROS mediated, mTOR dependent apoptosis pathway: an in-vitro study. BMC Complementary Medicine and Therapies, 23(1), 33. https://doi.org/10.1186/s12906-023-03849-5
Geldenhuys, W.J., Mohammad, A.S., Adkins, C.E., & Lockman, P.R. (2015). Molecular determinants of blood– brain barrier permeation. Therapeutic Delivery, 6, 961–971. https://doi.org/10.4155/tde.15.32
Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock Vina with AutoDock Tools: A Tutorial. The Scripps Research Institute. California.
Kalita, J. Chetia, D., & Rudrapal, M. (2019). Molecular docking, drug-likeness studies, and ADMET prediction of quinoline iminesfor antimalarial activity. J. Med. Chem. Drug Des., 2(1), 1-7. https://doi.org/10.16966/2578-9589.113
Kemenkes. (2024). Rencana Kanker Nasional 2024-2034: Strategi Indonesia dalam Upaya Melawan Kanker. Kementerian Kesehatan Republik Indonesia. https://www.iccp-portal.org/system/files/plans/Rencana_Kanker_Nasional_2024-2034.pdf
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening in drug discovery, methods, and applications. Nature Reviews Drug Discovery, 3, 935-949. https://doi.org/10.1038/nrd1549
Kurniasih, S., Wijaya, R., Mulyanti, D., & Fakih, T.M. (2022). Simulasi pengembangan obat baru pada senyawa apigenin, curcumin, firsetin, naringenin, dan silibinin terhadap protein target phosphoinositide 3-kinases (PI3-Ks) secara in-silico. Bandung Conference Series: Pharmacy, 2(1), 1-4. https://doi.org/10.29313/bcsp.v2i2.4403
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Deliery. Reviews, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
Meiyanto, E. (2012). Docking kurkumin dan senyawa analognya pada reseptor progesteron: Studi interaksinya sebagai Selective Progesterone Receptor Modulators (SPRMs). Pharmacon, 13(2), 55-60. https://doi.org/10.23917/pharmacon.v13i2.10
Sayuti, M., & Nouva, N. (2019). Kanker kolorektal. AVERROUS: Jurnal Kedokteran dan Kesehatan Malikussaleh, 5(2), 76-88. https:doi.org/10.29103/averrous.v5i2.2082
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians, 71(3), 209–49.https://doi.org/10.3322/caac.21660
Suryana, A.F., Wisnuwardhani, H.A., & Faki, T.M. (2022). Uji aktivitas in-silico senyawa amritoside, tinosporaside dan turunannya sebagai kandidat senyawa antidiabetes. Bandung Conference Series: Pharmacy, 2(2), 1-4. https://doi.org/10.29313/bcsp.v2i2.4369
Syahputra, G. (2014). Simulasi docking kurkumin enol, bisdemetoksikurkumin, dan analognya sebagai inhibitor enzim12-Lipoksigenase. Biofisika, 10(1), 55–67.https://journal.ipb.ac.id/index.php/biofisika/article/view/9354
Tjitda, P.J.P., Nitbani, F.O., Parikesit, A.A., Bessi, M.I.T., & Wahyuningsih, T.D. (2024). In-silico investigation of tropical natural product for wild-type and quadrupole mutant PfDHFR inhibitors as qntimalarial candidates. Tropical Journal of Natural Product Research, 8(2), 6208 - 6217. https://doi.org/10.26538/tjnpr/v8i2.18
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hanik Isnaini, Adinda Amalia Agustin RJ; Washeilatus Sholehah; Nida Sudarlina, Safina Oktafia, Luluk Ayu Khodariyah, Siwi Putri Mumpuni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.