Antioxidant activity, total phenolic, flavonoid, and caffeine contents of robusta coffee (Coffea canephora) fermented with lactic acid bacteria

Authors

  • Nadira Aisyah Program Studi Mikrobiologi, Departemen Biologi, FMIPA-IPB
  • Titi Candra Sunarti Departemen Teknologi Industri Pertanian, FATETA-IPB, Dramaga, Bogor, 16680
  • Anja Meryandini Departemen Biologi IPB

DOI:

https://doi.org/10.22302/iribb.jur.mp.v93i1.604

Keywords:

antioxidant, flavonoid, Lactiplantibacillus plantarum, phenolic compounds

Abstract

Robusta coffee is widely cultivated in Indonesia, but it struggles to dominate the global market due to its bitterness, slightly sour taste, and higher caffeine content. Coffee bean fermentation can be done to reduce undesirable characteristics in robusta coffee. This study aimed to evaluate the effects of lactic acid bacteria fermentation on the quality of coffee and its brewing characteristics, comparing it to spontaneous fermentation. The goal was to explore the potential of fermented coffee beans as functional beverages with health benefits. Three lactic acid bacteria (LAB) isolates were tested, and Lactiplantibacillus plantarum H 2.34 was identified as the most effective starter culture for coffee fermentation. After 12 hours of fermentation using coffee mucilage, LAB growth was significantly enhanced. A significant increase in flavonoid content was observed in coffee fermented with the starter culture. All brewed coffee samples demonstrated strong antioxidant activity, and LAB fermentation successfully reduced caffeine content by 4.85%. These results suggest that fermented robusta coffee could offer functional health benefits while improving its sensory profile.

Downloads

Download data is not yet available.

References

Adrianto, R., Agrippina, F. D., Wiraputr,a D., & Andaningrum, A. Z. (2020). Penurunan kadar kafein pada biji kopi robusta menggunakan fermentasi dengan bakteri asam laktat Leuconostoc mesenteroides (B-155) dan Lactobacillus plantarum (B-76) mentasi dengan Bakteri Asam Laktat. Indonesian Journal of Industrial Research, 31(2), 163–169.

Alonso-Salces, R. M., Serra, F., Reniero, F., & Heberger, K. (2009). Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. Journal of Agricultural and Food Chemistry, 57(10), 4224-4235.

Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., & Fiocco, D. (2016). Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in Microbiology, 7, 464. https://doi.org/10.3389/fmicb.2016.00464

Arwangga, A. F., Asih, I., & Sudiarta, I. W. (2016). Analisis kandungan kafein pada kopi di Desa Sesaot Narmada menggunakan spektrofotometri UV-Vis. Jurnal Kimia, 10(1), 110–114.

Bressani, A. P. P., Martinez, S. J., Evangelista, S. R., Dias, D. R., & Schwan, R. F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029

de Carvalho Neto, D. P., de Melo Pereira, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80–87. https://doi.org/10.1016/j.fbio.2018.10.005

Darmanto, S. M., Adib, A., & Suhartono, A. W. (2013). Perancangan corporate identity dan kemasan kopi surya Kintamani Bali. Jurnal DKV Adiwarna, 1(2), 12.

David, A., Govil, T., Tripathi, A. K., McGeary, J., Farrar, K., & Sani, R. K. (2018). Thermophilic anaerobic digestion: enhanced and sustainable methane production from co-digestion of food and lignocellulosic wastes. Energies (Basel), 11(8), 2058. https://doi.org/10.3390/en11082058

Dong, W., Tan, L., Zhao, J., Hu, R., & Lu, M. (2015). Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules, 20(9), 16687–16708. https://doi.org/ 10.1021/ac60111a017

Elhalis, H., Cox, J., & Zhao, J. (2020). Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. International Journal of Food Microbiology, 321, 108544. https:// doi.org/10.1016/j.ijfoodmicro.2020.108544

Falahudin, I. & Harmeni, L. (2016). Pengaruh pupuk organik limbah kulit kopi (Coffea arabica L.) terhadap pertumbuhan bibit kopi. Bioilmi: Jurnal Pendidikan, 2(2). https://doi.org/ 10.19109/bioilmi.v2i2.1135

Farah, A., Monteiro, M., Donangelo, C. M., & Lafay, S. (2008). Chlorogenic acids from green coffee extract are highly bioavailable in humans. Journal of Nutrition, 138(12), 2309–2315.

Fauzi, M., Choiron, M., & Astutik, Y. D. P. (2017). Karakteristik kimia kopi luwak robusta artifisial terfermentasi oleh ragi luwak dan α-amilase. Jurnal Penelitian Pascapanen Pertanian, 14(3), 144–153.

Fiedor, J. & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488. https:// doi.org/10.3390/nu6020466

Haile, M. & Kang, W. H. (2019). Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation, 5(1). https://doi.org/10.3390/fermentation5010029

Hartatie, D., & Kholilullah, A. (2018). Uji tingkat kesukaan konsumen pada seduhan kopi robusta (Coffea canephora) plus madu. AGROPROSS. National Conference Proceedings of Agriculture.

Herawati, D., Giriwono, P. E., Dewi, F. N. A., Kashiwagi, T., & Andarwulan, N. (2019). Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food science and biotechnology, 28, 7–14.

Hidayatulloh, A., Gumilar, J., & Harlia, E. (2019). The Potential of metabolites produced by Lactobacillus plantarum ATCC 8014 as a biopreservatives and anti-bacterial materials in animal food products. Jurnal Ilmu dan Teknologi Peternakan, 7(2). https://doi.org/10.20956/ jitp.v7i2.6811

Huch, M. & Franz, C. (2015). Coffee: fermentation and microbiota. Advances in fermented foods and beverages (pp. 501–513). Elsevier. https://doi.org/10.1016/B978-1-78242-015-6. 00021-9.

Kartasasmita, R. E. & Addyantina, S. (2012). Dekafeinasi biji kopi robusta (Coffea canephora L.) menggunakan pelarut polar (etanol dan metanol). Acta Pharmaceutica Indonesia, 37(3), 83–89.

Kinyua, A. W., Kipkorir, R., Mugendi, B. J., & Kathurima, C. (2017). Effect of different fermentation methods on physicochemical composition and sensory quality of coffee (Coffea arabica). https://41.89.227.156:8080/ xmlui/handle/123456789/626

Kurniawati, N., Meryandini, A., & Sunarti, T. C. (2016). Introduction of actinomycetes starter on coffee fruits fermentation to enhance quality of coffee pulp. Emirates Journal of Food and Agriculture, 28(3), 188.

Kwak, H. S., Jeong, Y., & Kim, M. (2018). Effect of yeast fermentation of green coffee beans on antioxidant activity and consumer acceptability. Journal of Food Quality, 2018, 5967130. https://doi.org/10.1155/2018/5967130

Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2015). Coffee fermentation and flavor–An intricate and delicate relationship. Food Chemistry, 185, 182–191. https://doi.org/ 10.1016/j.foodchem.2015.03.124

Lee, L. W., Tay, G. Y., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee. LWT, 77, 225–232. https://doi.org/ 10.1016/j.lwt.2016.11.047

Maier, R. M. & Pepper, I. L. (2015). Bacterial growth. Environmental microbiology (pp. 37–56). Elsevier. https://doi.org/10.1016/B978-0-12-394626-3.00003-X

Marcone, M. F. & Alrifai, O. (2019). Origins and compositional analysis of novel foods: Kopi luwak coffee and bird’s nest soup. 2019, 739-759.

Martinez, S. J., Bressani, A. P. P., Miguel, M.G. da C. P., Dias, D. R., & Schwan, R. F. (2017). Different inoculation methods for semi-dry processed coffee using yeasts as starter cultures. Food Research International, 102, 333–340. https://doi.org/10.1016/j.foodres.2017.09.096

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, 109482. https://doi.org/10.1016/j.foodres.2020. 109482

Pereira, G. V. de M., de Carvalho Neto, D. P., Medeiros, A. B. P., Soccol, V. T., Neto, E., Woiciechowski, A. L., & Soccol, C. R. (2016). Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. International Journal of Food Science & Technology, 51(7), 1689–1695. https://doi.org/10.1111/ijfs.13142

Polanía Rivera, A. M., López Silva, J., Torres-Valenzuela, L. S., & Plaza Dorado, J. L. (2024). Development of starter inoculum for controlled arabica coffee fermentation using coffee by-products (pulp and mucilage broth), yeast, and lactic acid bacteria. Fermentation, 10(10), 516. https://doi.org/10.3390/fermentation10100516

Pothakos, V., De Vuyst, L., Zhang, S. J., De Bruyn, F., Verce, M., Torres, J., Callanan, M., Moccand, C., & Weckx, S. (2020). Temporal shotgun metagenomics of an ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Current Research Biotechnology, 2, 1–15. https://doi.org/10.1016/j.crbiot.2020.02.001

Priftis, A., Stagos, D., Konstantinopoulos, K., Tsitsimpikou, C., Spandidos, D. A., Tsatsakis, A. M., Tzatzarakis, M. N., & Kouretas, D. (2015). Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Molecular Medicine Reports, 12(5), 7293–7302.

Putri, E., Rukayadi, Y., Sunarti, T. C., & Meryandini, A. (2023). Increase in polyphenolic substances from fermented robusta coffee pulp (Coffea canephora L.) by using indigenous actinomycetes. Hayati Journal of Biosciences, 30(3), 457–465.

Silva, C. F., Vilela, D. M., de Souza Cordeiro, C., Duarte, W. F., Dias, D. R., & Schwan, R. F. (2013). Evaluation of a potential starter culture for enhance quality of coffee fermentation. World Journal Microbiology and Biotechnology, 29, 235–247.

Sroka, Z., Janiak, M., & Dryś, A. (2015). Antiradical activity and amount of phenolic compounds in extracts obtained from some plant raw materials containing methylxanthine alkaloids. Herba Polonica, 61(3), 53–66.

Tawali, A. B., Abdullah, N., & Wiranata, B. S. (2018). Pengaruh fermentasi menggunakan bakteri asam laktat yoghurt terhadap citarasa kopi robusta (Coffea robusta): (the influence of fermentation using bacteria lactic acid yoghurt to the flavor of coffe robusta (Coffea robusta)). Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 90-97. https://doi.org/ 10.20956/canrea.v1i1.26

Tsaaqifah, H., Fahrurrozi, F., & Meryandini, A. (2023). Selection of lactic acid bacteria as starter culture for cocoa fermentation (Theobroma cacao L.). Jurnal Penelitian Pendidikan IPA, 9(2), 825–831. 10.29303/jppipa.v9i2.3045

Vignoli, J. A., Viegas, M. C., Bassoli, D. G., & de Toledo Benassi, M. (2014). Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International, 61, 279–285. https://doi.org/10.1016/j.foodres.2013.06. 006

Wang, C., Sun, J., Lassabliere, B., Yu, B., Zhao, Feifei, Zhao, Fangju, Chen, Y., & Liu, S. Q. (2019). Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. Journal Science of Food and Agriculture, 99(1), 409–420. https://doi.org/10.1002/jsfa.9202

Winahyu, D. A., Purnama, R. C., & Setiawati, M. Y. (2019). Uji aktivitas antioksidan pada ekstrak kulit buah naga merah (Hylocereuspolyrhizus) dengan metode DPPH. Jurnal Analis Farmasi, 4(2), 117–121. https://doi.org/10.33024/jaf.v4i2. 2240

Zofia, N. L., Aleksandra, Z., Tomasz, B., Martyna, Z. D., Magdalena, Z., Zofia, H. B., & Tomasz, W. (2020). Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules, 25(22), 5394.

Downloads

Submitted

23-12-2024

Accepted

28-04-2025

Published

05-05-2025

How to Cite

Aisyah, N., Sunarti, T. C., & Meryandini, A. (2025). Antioxidant activity, total phenolic, flavonoid, and caffeine contents of robusta coffee (Coffea canephora) fermented with lactic acid bacteria. Menara Perkebunan, 93(1), 21–30. https://doi.org/10.22302/iribb.jur.mp.v93i1.604