The influence of pyrolysis temperature and dosage of shorea wood biochar produced on soil properties and sengon (Falcataria moluccana) seedling biomass

Authors

  • Melya Riniarti University of Lampung
  • Wahyu Hidayat University of Lampung
  • Hendra Prasetia Research Center for Mining Technology, National Research and Innovation Agency (BRIN),
  • Bangun Adi Wijaya Chungnam National University

DOI:

https://doi.org/10.22302/iribb.jur.mp.v93i1.611

Keywords:

ameliorant, charcoal, meranti, sengon, waste

Abstract

This study explores the effects of pyrolysis temperature of shorea wood biochar and its doses on the soil properties and biomass of Falcataria moluccana seedlings. The focus is optimizing pyrolysis temperatures (400°C and 600°C) and biochar doses (0%, 25%, and 50%) to enhance soil fertility and seedling biomass. Both pyrolysis temperature and biochar dose are critical factors that influence the soil properties, directly affecting its effectiveness as a soil amendment. The research was conducted as a controlled greenhouse experiment over 120 days; each treatment was replicated 15 times. We observed several soil chemical properties, including pH, cation exchange capacity (CEC), organic carbon (C-organic), total nitrogen (N-total), and total phosphorus (P-total). The growth parameters assessed included above ground biomass (AGB), below ground biomass (BGB), total biomass (TB), and root to shoot ratio (R:S). Data analysis involved one-way and two-way ANOVA. Results indicated that soil properties, particularly cation exchange capacity (CEC) and organic carbon content, were improved, thereby enhancing soil fertility. However, ANOVA indicated no statistically significant differences across treatments. Biochar significantly enhanced above-ground and below-ground biomass (AGB and BGB). Nevertheless, both pyrolysis temperature and biochar dose independently influenced biomass accumulation in F. moluccana seedlings. The highest increases were observed in the treatment with the highest pyrolysis temperature (600ᵒC) and the highest dose (50%), which led to an 85% increase in AGB and a 60% increase in BGB compared to the control. Based on the study, Shorea wood biochar, particularly when used at 600°C and 50% dose, significantly improves soil fertility and seedling growth, providing a promising approach for developing F. moluccana plantations.

Downloads

Download data is not yet available.

References

Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology 119, 156-170. https://doi.org/10.1016/j.apsoil.2017.06.008

Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D., & Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science 177(5), 671-680. https://doi.org/10.1002/jpln.201400109

Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., & Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67(2), 150-200. https://doi.org/10.1080/09506 608.2021.1922047

Carneiro D, J. S., Ribeiro, I. C. A., Nardis, B. O., Barbosa, C. F., Lustosa Filho, J. F., & Melo, L. C. A. (2021). Long-term effect of biochar-based fertilizers application in tropical soil: Agronomic efficiency and phosphorus availability. Science of the Total Environment 760, 143955. https://doi.org/10.1016/j.scitotenv.2020.143955

Chandra, S., & Bhattacharya, J. (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. Journal of cleaner production 215, 1123-1139. https://doi.org/ 10.1016/j.jclepro.2019.01.079

Chen, D., Yu, X., Song, C., Pang, X., Huang, J., & Li, Y. (2016). Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Bioresource Technology 218, 1303-1306. https://doi.org/10.1016/j.biortech.2016.07.112

Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105, 68-74. https://doi.org/10.1016/j.chemosphere.2013.12.042

Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. D., Melo, L. C., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884

Fan, Q., Sun, J., Chu, L., Cui, L., Quan, G., Yan, J., Hussain, Q., & Iqbal, M. (2018). Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 207, 33-40. https://doi.org/10.1016/j.chemosphere.2018.05.044

Gao, Y., Shao, G., Yang, Z., Zhang, K., Lu, J., Wang, Z., Wu, S.,& Xu, D. (2021). Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. European Journal of Agronomy 130, 126345. https://doi.org/10.1016/j.eja.2021.126345

Guo, L., Bornø, M. L., Niu, W., & Liu, F. (2021). Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agricultural Water Management 245, 106580. https://doi.org/10.1016/j.agwat.2020.106580

Guo, X. X., Liu, H. T., & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management 102, 884-899. https://doi.org/10.1016/j.wasman.2019.12.003

Gupta, G. K., Gupta, P. K., & Mondal, M. K. (2019). Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. Waste Management 87, 499-51. https://doi.org/10.1016/j.wasman.2019.02.035

Haider, F. U., Coulter, J. A., Liqun, C. A. I., Hussain, S., Cheema, S. A., Jun, W. U., & Zhang, R. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere 32(1), 107-130. https://doi.org/10.1016/S1002-0160(20)60094-7

Hidayat, W., Riniarti, M., Prasetia, H., Niswati, A., Hasanudin, U., Banuwa, I. S., & Lee, S. (2021). Characteristics of biochar produced from the harvesting wastes of meranti (Shorea sp.) and oil palm (Elaeis guineensis) empty fruit bunches. IOP Conference Series: Earth and Environmental Science 749 (1), 012040.. https://doi.org/10.1088/1755-1315/749/1/012040

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M.B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2, 379-420. https://doi.org/10.1007/s42773-020-00065-z

Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd

Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23), 6613-6621. https://doi.org/10.5194/bg-11-6613-2014

Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T. M., & Dewil, R. (2022). Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal 428, 131189. https://doi.org/10.1016/j.cej.2021.131189

Karyati, K., Sarminah, S., Karmini, K., Rujehan, R., Lestari, V. F. E., & Panorama, W. S. (2019). Silvicultural, hydro-orological and economic aspects of a combination of vegetative (Falcataria moluccana-Vigna cylindrica) and terrace systems in soils of different slopes. Biodiversitas Journal of Biological Diversity 20(8). https://doi.org/10.13057/biodiv/d200828

Khan, N., Bolan, N., Jospeh, S., Anh, M. T. L., Meier, S., Kookana, R., & Qiu, R. (2023). Complementing compost with biochar for agriculture, soil remediation and climate mitigation. Advances in Agronomy 179, 1-90. https://doi.org/10.1016/bs.agron.2023.01.001

Khosravi, A., Zheng, H., Liu, Q., Hashemi, M., Tang, Y., & Xing, B. (2022). Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal 430, 133142. https://doi.org/10.1016/j.cej.2021.133142

Lehman, R. M., Cambardella, C. A., Stott, D. E., Acosta-Martinez, V., Manter, D. K., Buyer, J. S., Maul, J. E., Smith, J. L., Collins, H. P., Halvorson, J. J., Kremer, R. J., Lundgren, J. G., Ducey, T. F., Jin, V. L., & Karlen, D. L. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability 7(1), 988-1027. https://doi.org/10.3390/su7010988

Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., Cayuela, M., L., Arbestain, M.C., & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience 14(12), 883-892. https://doi.org/10.1038/ s41561-021 -00852-8

Liu, X., Wei, Z., Ma, Y., Liu, J., & Liu, F. (2021). Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Science of the Total Environment 770, 144769. https://doi.org/10.1016/j.scitotenv.2020.144769

Manzoor, Ma, L., Ni, K., & Ruan, J. (2022). Effect of integrated use of rapeseed cake, biochar and chemical fertilizers on root growth, nutrients use efficiency and productivity of tea. Agronomy 12(8), 1823. https://doi.org/10.3390/agronomy12081823

Mazlan, M. A. F., Uemura, Y., Osman, N. B., & Yusup, S. (2015, May). Characterizations of bio-char from fast pyrolysis of Meranti wood sawdust. Journal of Physics: Conference Series 622 (1)012054). https://doi.org/10.1088/1742-6596/622/1/012054

Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., & Ditta, A. (2021). Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition 44(11), 1677-1691. https://doi.org/10.1080/01904167.2021.1871746

Naeem, M. A., Khalid, M., Ahmad, Z., & Naveed, M. (2016). Low pyrolysis temperature biochar improves growth and nutrient availability of maize on typic calciargid. Communications in Soil Science and Plant Analysis 47(1), 41-51. https://doi.org/10.1080/00103624.2015.1104340

Pathy, A., Ray, J., & Paramasivan, B. (2020). Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar 2(3), 287-305. https://doi.org/10.1007/s42773-020-00063-1

Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: a sustainable approach for improving plant growth and soil properties. IntechOpen. https://doi.org/10.5772/intechopen.82151

Rupinta, N. M., Medina, M. A. P., & Marin, R. A. (2014). Effects of different hot water pre-germination treatment and germination media on the germination of Falcata (Falcataria moluccana). Paper Knowledge Toward a Media History of Documents, 16, 130-136. http://dx.doi.org/10.12692/ijb/16.2.130-136

Sari, D. R. (2018). The potential of woody waste biomass from the logging activity at the natural forest of Berau District, East Kalimantan. IOP Conference Series: Earth and Environmental Science 144 (1), 012061. https://doi.org/10.1088/1755-1315/144/1/012061

Sarminah, S., Karyati, K., Karmini, K., Simbolon, J., & Tambunan, E. (2018). Rehabilitation and soil conservation of degraded land using sengon (Falcataria moluccana) and peanut (Arachis hypogaea) agroforestry system. Biodiversitas Journal of Biological Diversity 19(1), 222-228. https://doi.org/10.13057/biodiv/d19013

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Environmental Science and Bio/Technolog 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3

Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., Masek, O., Hou, R., O’Connor, D.,& Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management 36(3), 358-386. https://doi.org/10.1111/sum.12592

Xie, T., Sadasivam, B. Y., Reddy, K. R., Wang, C., & Spokas, K. (2016). Review of the effects of biochar amendment on soil properties and carbon sequestration. Journal of Hazardous, Toxic, and Radioactive Waste 20(1), 04015013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000293

Yuan, H., Lu, T., Huang, H., Zhao, D., Kobayashi, N., & Chen, Y. (2015). Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis 112, 284-289. https://doi.org/10.1016/j.jaap.2015.01.010

Downloads

Submitted

31-01-2025

Accepted

30-04-2025

Published

07-05-2025

How to Cite

Riniarti, M., Hidayat, W., Prasetia, H., & Wijaya, B. A. (2025). The influence of pyrolysis temperature and dosage of shorea wood biochar produced on soil properties and sengon (Falcataria moluccana) seedling biomass. Menara Perkebunan, 93(1). https://doi.org/10.22302/iribb.jur.mp.v93i1.611

Most read articles by the same author(s)