Fabrication of Nanocellulose-EDTA Composite from Oil Palm Trunks for Cadmium Removal from Aqueous Solutions

Authors

  • Pemta Tiadeka Universitas Muhammadiyah Gresik
  • Diah Ratnasari Universitas Muhammadiyah Gresik
  • Mega Mustikaningrum Universitas Muhammadiyah Gresik
  • Sasti Amilia Putri Universitas Muhammadiyah Gresik
  • Lutiana Universitas Muhammadiyah Gresik

DOI:

https://doi.org/10.22302/iribb.jur.mp.v93i1.615

Keywords:

adsorption, cadmium, EDTA, membrane, nanocellulose

Abstract

The development of nanocellulose-based materials with enhanced properties has garnered significant interest among scientists. Oil palm trunks are a promising source of nanocellulose due to their high cellulose content, excellent adsorption capacity, and abundant availability. Cadmium, a toxic heavy metal, poses serious risks to environmental and human health. It accumulates in fish and plants, entering the human body through the food chain. Since cadmium resists natural degradation, effective removal methods are crucial to mitigate its hazardous effects. In this study, a functionalized nanocellulose composite (NCE) was successfully synthesized using ethylenediaminetetraacetic acid (EDTA) as a chelating agent to enhance cadmium adsorption in aqueous solutions. Analysis with FTIR confirmed the reaction between nanocellulose and EDTA, with characteristic bonds appearing at wavenumber 1100, 1172, and 48 cm⁻¹. Particle size analysis revealed polydisperse nanoparticles, with average sizes of 411.5 nm for nanocellulose and 665.3 nm for NCE. Microscopic imaging showed distinct morphological changes, indicating successful EDTA incorporation into the nanocellulose structure. NCE exhibited a high surface area (2.792 m² g-1). Atomic absorption spectroscopy showed a decrease in cadmium concentration, from 1 ppm to 0.2–0.3 ppm, indicating the adsorption ability of NCE. These findings highlight the potential of NCE for heavy metal remediation in water.

Downloads

Download data is not yet available.

References

Ablouh, E. H., Kassab, Z., Semlali Aouragh Hassani, F. Z., El Achaby, M., & Sehaqui, H. (2022). Phosphorylated cellulose paper as highly efficient adsorbent for cadmium heavy metal ion removal in aqueous solutions. RSC Advances, 12(2), 1084–1094. https://doi.org/10.1039/d1ra 08060a

Adsul, M., Soni, S. K., Bhargava, S. K., & Bansal, V. (2012). Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles. Biomacromolecules, 13(9), 2890–2895. https://doi.org/10.1021/ bm3009022

Akl, M. A., Abou-elanwar, A. M., Badri, M. D., & Youssef, A. M. (2015). Comparative adsorption studies of Cd(II) on EDTA and acid treated activated carbons from aqueous solutions. Journal of Analytical & Bioanalytical Techniques, 6(6). https://doi.org/10.4172/2155-9872.1000288

Ayob, S., Othman, N., Ali Hamood Altowayti, W., Khalid, F. S., Bakar, N. A., Tahir, M., & Soedjono, E. S. (2021). A review on adsorption of heavy metals from wood-industrial wastewater by oil palm waste. Journal of Ecological Engineering, 22(3), 249–265. https://doi.org/10.12911/ 22998993/132854

Babaei-Ghazvini, A., & Acharya, B. (2023). The effects of aspect ratio of cellulose nanocrystals on the properties of all CNC films: Tunicate and wood CNCs. Carbohydrate Polymer Technologies and Applications, 5(March), 100311. https://doi.org/ 10.1016/j.carpta.2023. 100311

Balea, A., Blanco, A., Delgado-Aguilar, M., Concepcion Monte, M., Tarrés, Q., Fuente, E., … Negro, C. (2021). Nanocellulose characterization challenges. BioResources, 16(2), 4382–4410. https://doi.org/10.15376/ biores.16.2.Balea

Bassyouni, M., Zoromba, M. S., Abdel-Aziz, M. H., & Mosly, I. (2022). Extraction of nanocellulose for eco-friendly biocomposite adsorbent for wastewater treatment. Polymers, 14(9). https://doi.org/10.3390/polym14091852

Brinkmann, A., Chen, M., Couillard, M., Jakubek, Z. J., Leng, T., & Johnston, L. J. (2016). Correlating cellulose nanocrystal particle size and surface area. Langmuir, 32(24), 6105–6114. https://doi.org/10.1021/acs.langmuir.6b01376

Chen, Q., Zheng, J., Wen, L., Yang, C., & Zhang, L. (2019). A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere, 224, 509-518. doi: 10.1016/j.chemosphere.2019.02.138

Faisal, M., Kana, S., Nabila, Hisbullah, Muslim, A., & Gani, A. (2022). Adsorption of Cd(II) in a semi-continuous process by residual charcoal from the pyrolyzed oil palm shells. Rasayan Journal of Chemistry, 15(3), 1792–1798. https://doi.org/10.31788/RJC.2022.1536909

Hubbe, M. A., Hasan, S. H., & Ducoste, J. J. (2011). Cellulosic substrates for removal of pollutants. BioResources, 6(1998), 2161–2287.

Kementerian Lingkungan Hidup Republik Indonesia. (2014). Peraturan Menteri Lingkungan Hidup Republik Indonesia. https://jdih.maritim.go.id/en/peraturan-menteri-negara-lingkungan-hidup-no-5-tahun-2014

Lim, Y. H., Chew, I. M. L., Choong, T. S. Y., Tan, M. C., & Tan, K. W. (2016). NanoCrystalline cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. MATEC Web of Conferences, 59, 0–4. https://doi.org/10.1051/matecconf/20165904002

Manzoor, K., Ahmad, M., Ahmad, S., & Ikram, S. (2019). Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent. ACS Omega, 4(17), 17425–17437. https:// doi.org/10.1021/acsomega.9b02214

Mustika, P. C. B. W., & Mustikaningrum, M. (2022). Fabrication of cellulose nanocrystal (CNCs) based biosorbent from oil palm trunks through acid hydrolysis with sonication assisted and adsorption kinetic study. Jurnal Kimia Sains dan Aplikasi, 25(9), 307–315. https://doi.org/ 10.14710/jksa.25.9.307-315

Nadhila, U., & Titah, H. S. (2021). Kajian penambahan EDTA pada fitoremediasi logam berat timbal. Jurnal Teknik ITS, 9(2), 2–7. ttps://doi.org/10.12962/j23373539.v9i2.53280

Nafi’ah, R., & Primadevi, S. (2020). Sintesis membran selulosa termodifikasi Na2EDTA dari bagase tebu untuk adsorpsi logam Pb. Jurnal Keperawatan Dan Kesehatan Masyarakat Cendekia Utama, 9(3), 272. https://doi.org/ 10.31596/jcu.v9i3.635

Nafisah, A. R., Rahmawati, D., & Tarmidzi, F. M. (2022). Synthesis of cellulose nanofiber from palm oil empty friut bunches using acid hydrolysis methode. Indonesian Journal of Chemical Science, 11(3), 233–240.

Naihi, H., Baini, R., & Yakub, I. (2021). Effect of NaOH treated oil palm empty fruit bunch (OPEFB) on adsorption of Cd (II) Under acidic condition. Turkish Online Journal of Qualitative Inquiry, 12(7), 7348–7355. https://www. tojqi.net/index.php/journal/article/view/4992/3507

Odenigbo, E. C., & Micheal, E. (2023). Isotherm modeling of the removal of lead and cadmium ions from pharmaceutical wastewater using oil palm empty fruit bunch, 8(6), 21–65.

Onoja, E., Chandren, S., Abdul Razak, F. I., Mahat, N. A., & Wahab, R. A. (2019). Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste and Biomass Valorization, 10(8), 2099–2117. https://doi.org/ 10.1007/s12649-018-0258-1

Rahman, A., Yoshida, K., Islam, M. M., & Kobayashi, G. (2023). Investigation of efficient adsorption of toxic heavy metals (chromium, lead, cadmium) from aquatic environment using orange peel cellulose as adsorbent. Sustainability (Switzerland), 15(5). https:// doi.org/10.3390/su15054470

Saef, S. K., Amalia, V., & Supriatna, A. M. (2022). Adsorpsi ion logam Cd(II) oleh selulosa limbah sabut kelapa sebagai adsorben berbiaya murah. Gunung Djati Conference Series, 15, 60–68. http://coferences.uinsgd.ac.id/index.php/

Saberi Riseh, R., Gholizadeh Vazvani, M., Hassanisaadi, M., & Skorik, Y. A. (2023). Micro-/nano-carboxymethyl cellulose as a promising biopolymer with prospects in the agriculture sector: A review. Polymers, 15(2). https://doi.org/10.3390/polym15020440

Suppapruek, M., Threepopnatkul, P., Sittattrakul, A., & Lerdwijitjarud, W. (2021). Effect of chelating agents on removal of heavy metal cations of cellulose-based ion exchange resins from water hyacinth. E3S Web of Conferences, 302. https://doi.org/10.1051/e3sconf/20213020 2020

Yang, L., & You, N. (2023). Functionalized cellulose with EDTA-like chelating groups for removal of heavy metals. Research Square, 1–20.

Zhang, K., Dai, Z., Zhang, W., Gao, Q., Dai, Y., Xia, F., & Zhang, X. (2021). EDTA-based adsorbents for the removal of metal ions in wastewater. Coordination Chemistry Reviews, 434, 213809. https://doi.org/10.1016/j.ccr.2021.213809

Downloads

Submitted

13-02-2025

Accepted

28-04-2025

Published

02-06-2025

How to Cite

Tiadeka, P., Ratnasari, D., Mustikaningrum, M., Amilia Putri, S., & Lutiana. (2025). Fabrication of Nanocellulose-EDTA Composite from Oil Palm Trunks for Cadmium Removal from Aqueous Solutions. Menara Perkebunan, 93(1), 68–73. https://doi.org/10.22302/iribb.jur.mp.v93i1.615