Identification of metabolites for biomarker of nitrogen and potassium use efficiency in oil palm

Authors

  • Retno Diah Setiowati Indonesian Oil Palm Research Institute
  • Sri Wening IOPRI
  • Tri Rini Nuringtyas Gadjah Mada University
  • Megayani Sri Rahayu IPB University
  • Sudarsono Sudarsono IPB University

DOI:

https://doi.org/10.22302/iribb.jur.mp.v93i1.631

Keywords:

Antioxidants, biomarkers, LC-HRMS, liquid nitrogen, nutrient-use efficiency

Abstract

Nutrient-use efficiency in oil palm is important for economic and environmental reasons. This research aimed to identify biomarkers to discriminate between tolerant and susceptible oil palms to potassium (K) and nitrogen (N) deficiency. A screening of oil palm materials for N or K use efficiency was conducted using an omission trial experiment, where only targeted nutrient was applied as treatment, while all other nutrients were applied as recommended. The treatment was performed in the main nursery for ten months to identify progenies with contrasting traits. Metabolite analysis was performed to identify specific metabolites as biomarkers for N-efficient and K-efficient palms. Samples taken from the roots of the contrasting progenies were treated with liquid nitrogen prior to grinding into a powder for liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. The LC-HRMS analysis showed 277 metabolites from K and N treatments after data trimming, which were then analysed in MetaboAnalyst 6.0 for biomarker identification. The results showed that some metabolites were statistically significant. Metabolites identified in more than one analysis have a higher likelihood of being considered as biomarkers. In this experiment, we compared PLS-DA, sPLS-DA, and Random Forest. However, some identified metabolites were not to occur naturally in the treatment palms. Some amino acids and antioxidants were promising biomarkers to differentiate the N-deficiency-tolerant and K-deficiency-tolerant palms. Thus, the biomarkers facilitate the breeding scheme to create a nutrient-efficient palm planting material.

Downloads

Download data is not yet available.

References

Ahmadpourmir, H., Attar, H., Asili, J., Soheili, V., Taghizadeh, S. F., & Shakeri, A. (2024). Natural-derived acetophenones: Chemistry and pharmacological activities. Natural Products and Bioprospecting, 14(1), 28. https://doi.org/10.1007/s13659-024-00447-x

Al-Jaber, H. I., Shakya, A. K., Al-Qudah, M. A., Barhoumi, L. M., Abu-Sal, H. E., Hasan, H. S., ... & Mubarak, M. (2024). Piceatannol: A comprehensive review of health perspectives and pharmacological aspects. Arabian Journal of Chemistry, 105939. https://doi.org/10.1016/j.arabjc.2024.105939

Baranwal, A., Aggarwal, P., Rai, A., & Kumar, N. (2022). Pharmacological actions and underlying mechanisms of catechin: A review. Mini Reviews in Medicinal Chemistry, 22(5), 821–833. https://doi.org/10.2174/1389557521666210902162120

Čapek, P., Manzoni, S., Kaštovská, E., Wild, B., Diáková, K., Bárta, J., ... & Šantrůčková, H. (2018). A plant–microbe interaction framework explaining nutrient effects on primary production. Nature ecology & evolution, 2(10), 1588-1596.

Cui, J., Davanture, M., Zivy, M., Lamade, E., & Tcherkez, G. (2019). Metabolic responses to potassium availability and waterlogging reshape oil palm respiration and carbon use efficiency. New Phytologist, 223(1), 310–322.

Cui, J., Lamade, E., & Tcherkez, G. (2020). Potassium deficiency reconfigures sugar export and induces catecholamine accumulation in oil palm leaves. Plant Science, 300, 110628.

Delices, M., Muller, J. D. A. I., Arunachalam, K., & de Oliveira Martins, D. T. (2023). Anadenanthera colubrina (Vell) Brenan: Ethno-botanical, phytochemical, pharmacological and toxicological aspects. Journal of ethnopharma-cology, 300, 115745. https://doi.org/10.1016/j. jep.2022.115745

Ganie, A. H., Pandey, R., Kumar, M. N., Chinnusamy, V., Iqbal, M., & Ahmad, A. (2020). Metabolite profiling and network analysis reveal coordinated changes in low-N tolerant and low-N sensitive maize genotypes under nitrogen deficiency and restoration conditions. Plants, 9(11), 1459. https://doi.org/10.3390/ plants9111459

Han, H., Guo, X., & Yu, H. (2016). Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In 2016, the 7th IEEE International Conference on Software Engineering and Service Science (ICESS) (pp. 219-224). IEEE. https://doi.org/ 10.1109/ICSESS.2016.7883053

Heinemann, B., & Hildebrandt, T. M. (2021). The role of amino acid metabolism in signalling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72(13), 4634-4645. https://doi.org/ 10.1093/jxb/erab182

Inbaraj, M. P. (2021). Plant-microbe interactions in alleviating abiotic stress—a mini review. Frontiers in Agronomy, 3, 667903.

Kim, Y. X., Kim, T. J., Lee, Y., Lee, S., Lee, D., Oh, T. K., & Sung, J. (2018). Metabolite profiling and mineral nutrient analysis from the leaves and roots of bell pepper (Capsicum annuum L. var. angulosum) grown under macronutrient mineral deficiency. Applied Biological Chemistry, 61, 661-671.

Li, Y., Hu, T., Xiang, A., Liu, K., & Zhang, G. (2024). Molybdenum tailings calcination for phase composition of Si-Ca-K-Mg fertilizers: Modification of phase transformation and its effects on plant growth. Chemical Engineering Journal, 493, 152726. https://doi.org/10.1016/ j.cej.2024.152726

Lim, Y. L., Tenorio, F. A., Monzon, J. P., Sugianto, H., Donough, C. R., Rahutomo, S., ... & Grassini, P. (2023). Too little, too imbalanced: nutrient supply in smallholder oil palm fields in Indonesia. Agricultural Systems, 210, 103729. https://doi.org/10.1016/j.agsy.2023.103729

Medina-Meza, I. G., VanderWeide, J., Torres-Palacios, C., & Sabbatini, P. (2021). Quantitative metabolomics unveils the impact of agricultural practices on the grape metabolome. ACS Agricultural Science & Technology, 1(3) 253-261.

Mierzejewski, K., Kurzyńska, A., Golubska, M., Gałęcka, I., Całka, J., & Bogacka, I. (2024). PET microplastics increase the risk of insulin resistance and pancreatitis. bioRxiv, 2024-10.

Pangaribuan, I. F., Wening, S., Pratiwi, D. R., Setiowati, R. D., Ginting, E. N., & Mardiana, C. (2024, May). Oil palm seedling responses to various dosages of fertilizer input. In The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024).

Poynton, E. F., Van Santen, J. A., Pin, M., Contreras, M. M., McMann, E., Parra, J., Showalter, B., Zaroubi, L., Duncan, K. R., & Linington, R. G. (2024). The Natural Products Atlas 3.0: Extending the database of microbially-derived natural products. Nucleic Acids Research, 53(D1), gkae1093. https://doi.org/10.1093/nar/ gkae1093

Sang, H., & Lee, H. B. (2020). Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi. Research in Plant Disease, 26(1), 1–7. https://doi.org/10.5423/RPD.2020.26.1.1

Schmidt, M. U., Schmiermund, T., & Bolte, M. (2007). Anilic acid dimethylformamide disolvate. Structure Reports, 63(1), o293-o295.

Shen, T., Xiong, Q., Zhong, L., Shi, X., Cao, C., He, H., & Chen, X. (2019). Analysis of main metabolisms during nitrogen deficiency and compensation in rice. Acta Physiologiae Plantarum, 41, 1-14. https://doi.org/10.1007/ s11738-019-2860-7

Sung, J., Lee, S., Lee, Y., Ha, S., Song, B., Kim, T., ... & Krishnan, H. B. (2015). Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus, or potassium-deficient conditions. Plant Science, 241, 55–64.

Tong, S. R., Lee, T. H., Cheong, S. K., & Lim, Y. M. (2020). Untargeted metabolite profiling on the water-soluble metabolites of edible bird’s nest through liquid chromatography-mass spectrometry. Veterinary World, 13(2), 304.

Trovato, M., Funck, D., Forlani, G., Okumoto, S., & Amir, R. (2021). Amino acids in plants: Regulation and functions in development and stress defence. Frontiers in Plant Science, 12, 772810. https://doi.org/10.3389/fpls.2021.772810

Wallace, M. A. G., & McCord, J. P. (2020). High-resolution mass spectrometry. In Breathborne biomarkers and the human volatilome (pp. 253–270). Elsevier. https://doi.org/10.1016/B978-0-12-819967-1.00016-5

Wan, T., Feng, Y., Liang, C., Pan, L., He, L., & Cai, Y. (2021). Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology, 10(3), 201. https://doi.org/10.3390/biology10030201

Wening, S., Setiowati, R. D., Pratiwi, D. R., Pangaribuan, I. F., & Ginting, E. N. (2024). Bacterial diversity in different growing media of oil palm seedlings associated with potassium use efficiency. Biodiversitas Journal of Biological Diversity, 25(8). https://doi.org/10.13057/biodiv/ d250809

Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(suppl_2), W652-W660. https://doi.org/ 10.1093/nar/gkp356

Xu, S., Bai, C., Chen, Y., Yu, L., Wu, W., & Hu, K. (2024). Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data. Analytica chimica acta, 1287, 342103. https://doi.org/10.1016/j.aca.2023.342103

Downloads

Submitted

17-04-2025

Accepted

24-06-2025

Published

04-07-2025

How to Cite

Setiowati, R. D., Sri Wening, Nuringtyas, T. R., Rahayu, M. S., & Sudarsono, S. (2025). Identification of metabolites for biomarker of nitrogen and potassium use efficiency in oil palm. Menara Perkebunan, 93(1), 74–82. https://doi.org/10.22302/iribb.jur.mp.v93i1.631

Most read articles by the same author(s)