Waste reduction and nutrient recovery during the co-composting of empty fruit bunches and palm oil mill effluent

Authors

  • Victor BARON CIRAD, Perennial Cropping System Research Unit, 34398 Montpellier Cedex 5, France.
  • Jajang SUPRIATNA Research & Development Centre Austindo
  • Clarisse MARECHAL UniLasalle Beauvais, 19, rue Pierre Waguet - BP 30313 - 60026 Beauvais Cedex – France.
  • Rajiv SADASIBAN BARformula Sdn Bhd, No.3, Jalan 5/19, 46000 Petaling Jaya, Selangor, Malaysia
  • Xavier BONNEAU CIRAD, Perennial Cropping System Research Unit, 34398 Montpellier Cedex 5, France.

DOI:

https://doi.org/10.22302/iribb.jur.mp.v87i2.338

Keywords:

composting, empty fruit bunch, nutrient recovery, oil palm, palm oil mill effluent, sustainability

Abstract

Abstrak

Minyak kelapa sawit adalah minyak nabati yang paling banyak dikonsumsi dunia. Setengah dari produksinya berasal dari Indonesia, walaupun perluasannya telah dikritik dari sudut pandang lingkungan. Pengurangan dampak lingkungan perkebunan melalui praktik pengelolaan limbah yang lebih baik sangat penting untuk mencapai produksi yang lebih bersih. Dalam konteks ini, penelitian difokuskan pada pengomposan, praktik yang semakin banyak diterapkan di agroindustri. Penelitian bertujuan untuk menguji pengomposan produk samping pabrik kelapa sawit yaitu tandan kosong kelapa sawit (TKKS) dan limbah cair pabrik kelapa sawit (LCPKS), pada rasio LCPKS/TKKSdan frekuensi pembalikan yang berbeda. Setelah 60 hari, kompos masih dalam fase mesofilik dan tidak dapat dianggap sebagai kompos matang karena rasio C/N dan suhu yang tinggi. Penurunan bobot dan volume yang tinggi telah dicapai masing-masing sebesar 40% dan 60%, serta penguapan air yang signifikan dari LCPKSdan TKKS(60%). Rasio LCPKSterhadap TKKSpada 1 – 1.5 m3/ton adalah optimal untuk mencapai kelembaban (65-70%), ruang udara bebas (>50%) dan pemulihan nutrisi, juga menunjukkan bahwa dalam kondisi percobaan ini proses pengomposan tidak dapat menggunakan semua LCPKSyang diproduksi oleh pabrik (3m3/ton TKKS). Tingkat pemulihan nutrisi mendekati 100% untuk fosfor, kalium dan magnesium, sedangkan untuk nitrogen terjadikehilangan sekitar 30-35%. Pengomposan dengan platform beton dan beratap, tidak melakukan penyemprotan pada tumpukan secara berlebihan, dan mendaur ulang semua limbah cair merupakan hal penting untuk mencapai efisiensi pemulihan nutrisi yang tinggi dan untuk mengontrol kualitas kompos akhir.

[Kata kunci:pengomposan, tandan kosong, pemulihan nutrisi, kelapa sawit, limbah cair pabrik kelapa sawit, keberlanjutan]

Abstract

Palm oil is the most consumed edible oil in the world. Roughly half of the production originates from Indonesia, where the expansion of the crop has been criticized from an environmental perspective. Reducing the environmental impact of plantations through better waste management practices is critical to achieve cleaner production. In this context, our study was focused on composting, a practice increasingly adopted among agro-industries. Our trial was designed to test co-composting of the main palm oil mill by-products – empty fruit bunches (EFB) and palm oil mill effluent (POME) – under different POME/EFB ratios and turning frequencies. After 60 days the compost was still in a mesophilic phase and could not be considered as mature compost due to high C/N ratio and temperature. High weight and volume reduction were achieved (40% and 60% respectively), as well as significant water evaporation from the POME and EFB (60%). We found that a POME to EFB ratio of 1 to 1.5 m3/ton was optimal for moisture (65-70%), free air space (>50%) and nutrient recovery, showing that in our experimental conditions the composting process could not use all the POME produced by the mill (3m3/ton of EFB). The nutrient recovery rate was close to 100% for phosphorus, potassium and magnesium. For nitrogen we observed 30-35% of losses. Composting on a concrete platform with a roof, not over-spraying the piles and recycling all the leachates are critical points to achieve high nutrient recovery efficiency and to control final compost quality.

[Keywords:composting, empty fruit bunch, nutrient recovery, oil palm, palm oil mill effluent, sustainability]

Downloads

Download data is not yet available.

References

Abd El Kader N, P Robin, JM Paillat & P Leterme (2007). Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting. Bioresource Technology 98 (14), 2619‑28.

Abood SA, J Huay Lee, Z Burivalova, J Garcia-Ulloa & L Pin Koh (2015). Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia: Deforestation among Indonesia’s Industries. Conservation Letters 8 (1), 58‑67.

Altieri MA & CI Nicholls (2005). Agroecology and the search for a truly Sustainable Agriculture. United Nations Environment Programm, Mexico. http://socla.co/wp-content/uploads/2014/agroecology-engl-PNUMA.pdf.

Baharuddin, AS, M Wakisaka, Y Shirai, AA Suraini, NA Abdul Rahma & MA Hassan (2009). Co-composting of empty fruit bunches and partially treated palm oil mill effluent in pilot scale. International Journal of Agricultural Research 4 (2), 69‑78.

Baron V, J Jupesta & JP Caliman (2018). Integrating composting into the life cycle assessment of palm oil production. In: Proc Indonesian Conference Series on Life Cycle Assessment. 24-25 October 2018. Universitas Indonesia, Jakarta.

Bernal MP, C Paredes, MA Sanchez-Monedero & CJ Cegarra (1998.) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology 63, 91‑99.

Bernal MP, JA Alburquerque & R Moral (2009). Composting of animal manures and chemical criteria for compost maturity assessment: A Review. Bioresource Technology 100 (22), 5444‑53.

Bessou C, A Verwilghen, L Beaudoin-Ollivier, R Marichal, J Ollivier, V Baron & X Bonneau (2017). Agroecological practices in oil palm plantations: examples from the field. OCL 24 (3), D305.

Bessou C, LDC Chase, IE Henson, AFN Abdul-Manan, L Milà i Canals, F Agus, M Sharma & M Chin (2014). Pilot application of palm GHG, the roundtable on sustainable palm oil greenhouse gas calculator for oil palm products. Journal of Cleaner Production 73, 136‑45.

Carron MP, M Pierrat, D Snoeck, C Villenave, F Ribeyre, Suhardi, R Marichal, & JP Caliman (2015). Temporal variability in soil quality after organic residue application in mature oil palm plantations. Soil Research 53 (2), 205-215.

Choo YM, H Muhamad, Z Hashim, V Subramaniam, CW Puah & YA Tan (2011). Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. The International Journal of Life Cycle Assessment 16 (7), 669‑81.

Comte I, F Colin, O Grünberger, JK Whalen, RH Widodo & JP Caliman (2015). Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: A case study in Sumatra (Indonesia). Environmental Science and Pollution Research 22 (10), 7676‑95.

Comte I, F Colin, O Grünberger, S Follain, JK Whalen & JP Caliman (2013). Landscape-scale assessment of soil response to long-term organic and mineral fertilizer application in an industrial oil palm plantation, Indonesia. Agriculture, Ecosystems & Environment 169, 58‑68.

Corley RHV (2009). How much palm oil do we need? Environmental Science & Policy 12 (2), 134‑39.

Dislich C, AC Keyel, J Salecker, Y Kisel, KM Meyer, M Auliya, AD Barnes, MDCorre, K Darras, H Faust, B Hess, S Klasen, A Knohl, H Kreft, A Meijide, F Nurdiansyah, F Otten, G Pe’er, S Steinebach, S Tarigan, MH T̈olle, T Tscharntke & K Wiegand (2016). A Review of the Ecosystem Functions in Oil Palm Plantations, Using Forests as a Reference System: Ecosystem Functions of Oil Palm versus Forest. Biological Reviews. http://doi.wiley.com/10.1111/brv.12295

Dubos B, D Snoeck & A Flori (2016). Excessive use of fertilizer can increase leaching processes and modify soil reserves in two ecuadorian oil palm plantations. Experimental Agriculture 1(2), 1‑14.

Euler M,S Schwarze, H Siregar & M Qaim (2016). Oil palm expansion among smallholder farmers in Sumatra, Indonesia. J Agric Econ 67, 658–676.

Francou C, M Poitrenaud & S Houot (2005). Stabilization of organic matter during composting: Influence of process and feedstocks. Compost Science & Utilization 13(1), 72-83.

Goyal S, S Dhull & K Kapoor (2005). Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology 96 (14), 1584‑91.

Huet J, C Druilhe, A Trémier, JC Benoist & G Debenest (2012). The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting. Bioresource Technology 114, 428‑36.

Jiang T, F Schuchardt, G Li, R Guo & Y Zhao (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences 23 (10), 1754‑1760.

Kibblewhite MG, K Ritz & MJ Swift (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363 (1492), 685‑701.

Levanon D & D Pluda (2002). Chemical, physical and biological criteria for maturity in composts for organic farming. Compost Science & Utilization 10 (4), 339‑46.

Margono BA, PV Potapov, S Turubanova, F Stolle & MC Hansen (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4 (8), 730‑35.

Nasution MA., DS Wibawa, T Ahamed & R Noguchi, (2018). Comparative environmental impact evaluation of palm oil mill effluent treatment using a life cycle assessment approach: A case study based on composting and a combination for biogas technologies in North Sumatera of Indonesia. Journal of Cleaner Production 184, 1028‑1040.

Oudart D, E Paul, R Robin & JM Paillat (2012). Modeling organic matter stabilization during windrow composting of livestock effluents. Environmental Technology 33 (19), 2235‑43.

Partanen Pasi, J Hultman, L Paulin, P Auvinen & M Romantschuk (2010). Bacterial diversity at different stages of the composting Process. BMC Microbiology 10 (1), 94.

Perwitasari U, F Dimawarnita & S Ratnakomala (2018). Optimization of ligninolytic enzyme production from Pleurotus ostreatus medium waste production using surface response methodology. Menara Pekebunan 86(1), 29-37.

Raj D & RS Antil (2011). Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresource Technology 102 (3), 2868‑73.

Rist L, L Feintrenie & P Levang (2010). The livelihood impacts of oil palm: smallholders in Indonesia. Biodivers Conserv 19, 1009–1024.

Salètes S, FA Siregar, JP Caliman & T Liwang (2004). Ligno-cellulose composting: Case study on monitoring oil palm residuals. Compost science and utilization 12 (4), 372-382.

Sánchez-Monedero MA, A Roig, C Paredes & MP Bernal (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology 78 (3), 301–308.

Sánchez OJ, DA Ospina & S Montoya (2017).Compost supplementation with nutrients and microorganisms in composting process. Waste Management 69, 136‑53.

Schmidt JH (2010). Comparative life cycle assessment of rapeseed oil and palm oil. The International Journal of Life Cycle Assessment 15 (2), 183‑97.

Schuchardt F, K Wulfert, D Darnoko & T Herawan (2007). Effect of new palm oil mill processes on the EFB and POME utilization. In: Proc Chemistry and Technology Conference PIPOC. Kuala Lumpur, 26-30 August 2007.

Shen Y, L Ren, G Li, T Chen & R Guo (2011). Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Management 31 (1), 33‑38.

Singh RP, MH Ibrahim, N Esa & M Iliyana (2010). Composting of waste from palm oil mill: A sustainable waste management practice. Reviews in Environmental Science and BioTechnology 9 (4), 331‑44.

Stichnothe H & F Schuchardt (2010). Comparison of different treatment options for palm oil production waste on a life cycle basis. The International Journal of Life Cycle Assessment 15 (9), 907‑15.

Supriatna J, V Baron, R Sadasiban & X Bonneau (2018). Composting for sustainable palm oil production. In International Conference on Oil Palm and the environment, ICOPE. 25-27 April 2016. Nusa Dua, Bali, Indonesia.

ao HH, EM Slade, KJ Willis, JP Caliman & JL Snaddon (2016). Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems & Environment 218, 133‑40.

Tao HH, JL Snaddon, E Slade, JP Caliman, RH Widodo, Suhardi & JK Willis (2017). Long-term crop residue application maintains oil palm yield and temporal stability of production. Agronomy for Sustainable Development 37 (33), 8p.

Tohiruddin L & HL Foster (2013). Superior effect of compost derived from palm oil mill by-products as a replacement for inorganic fertilizers applied to oil palm. Journal of Oil Palm Research 25 (1), 123–137.

Xi, BD, XS He, ZM Wei, YH Jiang, MX Li, D Li, Y Li & QL Dang (2012). Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere 88 (6),744‑50.

Yahya A, CP Sye, TA Ishola & H Suryanto (2010). Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresource Technology 101 (22), 8736‑41.

Yuan J, D Chadwick, D Zhang, G Li, S Chen, W Luo, L Du, S He & S Peng (2016). Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Management 56, 403‑10.

Zahrim AY, A Nasimah & N Hilal (2014). Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. Journal of Water Process Engineering 4, 159‑65.

Downloads

Submitted

01-07-2019

Accepted

10-09-2019

Published

31-10-2019

How to Cite

BARON, V., SUPRIATNA, J., MARECHAL, C., SADASIBAN, R., & BONNEAU, X. (2019). Waste reduction and nutrient recovery during the co-composting of empty fruit bunches and palm oil mill effluent. Menara Perkebunan, 87(2). https://doi.org/10.22302/iribb.jur.mp.v87i2.338