Peningkatan hasil dan penekanan kejadian penyakit pada jagung manis (Zea mays var. Bonanza) dengan pemanfaatan biostimulan berbahan kitosan

Sri Wahyuni, Ciptadi Achmad Yusup, Deden Dewantara Eris, Soekarno Mismana Putra, Agustin Sri Mulyatni, Siswanto Siswanto, Priyono Priyono

Abstract


Abstract
Corn, an important crop in Indonesia still has a low productivity, thus many efforts are required to fulfill its national demand. One of the solutions to improve corn yield is by applying biostimulant containing chitosan as an active ingredient. Chitosan has been proved to increase plant growth and resistance against diseases. The objective of this research was to study the effects of several chitosan formulas on the yield and diseases occurance in sweet corn (Zea mays var. Bonanza). The chitosan formulas tested were soluble liquid
(SL), wettable powder (WP), nano chitosan (NN), and unformulated chitosan (CH). The experiment was arranged using a randomized block design with three replications. All chitosan formulas were applied by seeds soaking for 20 minutes, followed by foliar spraying on corn plants at three weeks after planting (WAP), with the concentration of 500 ppm (400 L/ha spray volume), every three
weeks until 9 WAP. Parameters observed were brix value, weight of corn cobs, weight of corn biomass, and plant diseases including downy leaves, leaf
blight and leaf rust. The results showed that NN formula increased the brix value up to 7%, the corn cob weight up to 49% and the biomass weight up
to 34% compared to the control; whereas SL formula reduced the incidence of downy mildew by 53% at 3 WAP and leaf blight disease by 51% at 6 WAP. In addition, the incidence of corn leaf rust reduced 59-71% in corn plant subjected to all chitosan formulas. Based on the results, application of chitosan in NN formula was best in increasing yield, while in SL formula was best in reducing the incidence of important corn diseases.
[Keywords: downy mildew, chitosan formula, seed treatment]


Abstrak
Jagung sebagai salah satu komoditas pangan penting di Indonesia masih memiliki produktivitas yang rendah sehingga diperlukan usaha untuk memenuhi kebutuhan jagung nasional. Salah satu cara untuk meningkatkan hasil jagung adalah dengan aplikasi biostimulan yang mengandung bahan aktif kitosan. Kitosan telah terbukti mampu meningkatkan pertumbuhan dan daya tahan
tanaman terhadap penyakit. Penelitian ini bertujuan mempelajari pengaruh beberapa formula kitosan terhadap hasil dan kejadian penyakit pada tanaman jagung manis (Zea mays var. Bonanza). Formula kitosan yang diuji adalah cairan yang dapat larut (soluble liquid, SL), tepung yang dapat dibasahi (wettable powder, WP), nano kitosan (nano chitosan, NN), dan kitosan non formulasi (unformulated chitosan, CH). Percobaan dilakukan menggunakan rancangan acak kelompok (RAK) dengan tiga ulangan. Masingmasing formula kitosan tersebut diaplikasikan melalui perendaman benih selama 20 menit yang
diikuti dengan penyemprotan daun pada tanaman jagung berumur tiga minggu dengan konsentrasi 500 ppm (volume semprot 400 L/ha) yang dilakukan setiap tiga minggu sampai tanaman berumur sembilan minggu. Parameter yang
diamati adalah nilai brix, bobot tongkol jagung, bobot biomassa jagung, dan penekanan kejadian beberapa penyakit tanaman meliputi bulai, hawar
daun, dan karat daun. Hasil penelitian menunjukkan bahwa aplikasi kitosan NN
meningkatkan nilai brix jagung manis hingga 7%, bobot tongkol jagung hingga 49% dan bobot biomassa hingga 34% dibandingkan dengan kontrol. Sementara itu, aplikasi kitosan SL dapat menekan kejadian penyakit bulai hingga 53% pada
umur tanaman 3 minggu setelah tanam (MST) dan penyakit hawar daun hingga 51% pada umur 6 MST. Selain itu, kejadian penyakit karat daun jagung juga dapat ditekan 59-71% pada aplikasi keempat formula kitosan. Berdasarkan hasil
tersebut, aplikasi kitosan NN paling optimal dalam meningkatkan hasil panen jagung manis, sedangkan aplikasi kitosan SL paling optimal dalam menekan kejadian beberapa penyakit pada tanaman jagung.

[Kata Kunci: bulai, formula kitosan, perlakuan benih]


Keywords


bulai, formula kitosan, perlakuan benih

Full Text:

PDF

References


Abdel-Aziz HMM, MNA Hasaneen & AM Omer (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish J Agric Res, 14(1), 1-9.

Agrios GN (2005). Introduction to plant pathology. Elsevier Academic Press Publication: New York.

Agustamia C, Widiastuti A, & Sumardiyono C (2016). Pengaruh stomata dan klorofil pada ketahanan beberapa varietas jagung terhadap penyakit bulai. Jurnal Perlindungan Tanaman Indonesia, 20(2), 89-94.

Anggara R, S Sularno & J Junaidi (2017). Pengaruh pemberian oligo kitosan terhadap pertumbuhan dan produksi tanaman jagung Srikandi Putih-1. Jurnal Agrosains dan Teknologi, 1(2), 1-8.

Asni, Nurul, Arif MS, Djonaedi S (2014). Optimasi sintesis kitosan dari cangkang kepiting sebagai adsorben logam berat Pb(II). Jurnal Fisika dan Aplikasinnya 15 (1), 18-25.

Behzadi S, V Serpooshan, W Tao, MA Hamaly, MY Alkawareek, EC Dreaden, D Brown, AM Alkilany, OC Farokhzad & M Mahmoudi (2011). Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev, 46(14): 4218-4244.

Choudhary RC, R Kumaraswamy, S Kumari, S Sharma, A Pal, R Raliya, P Biswas & V Saharan (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). J Sci Rep, 7(9754), 1-11.

De Planque MR, S Aghdaei, T Roose & H Morgan (2011). Electrophysiological characterization of membrane disruption by nanoparticles. ACS Nano, 24;5(5), 3599-3606.

Dominska M & DM Dykxhoorn (2010). Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci, 123: 1183-1189.

Eichert T & HE Goldbach (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiol Plant, 132, 491–502.

Eichert T, A Kurtz, U Steiner & HE Goldbach (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant, 134, 151–160.

Gallant A (2004). Biostimulants: what they are and how they work. J TURF Recreat, 1-4.

González Gómez H, F Ramírez Godina, H Ortega Ortiz, A Benavides Mendoza, V Robledo Torres & M Cabrera De la Fuente (2017). Use of chitosan-PVA hydrogels with copper nanoparticles to improve the growth of grafted watermelon. J Molecules, 22(1031), 1-9.

Gumilar TA, E Prihastanti, S Haryanti & A Subagio (2017). Utilization of waste silica and chitosan as fertilizer nano chisil to improve corn production in Indonesia. Adv Sci Lett 23(3), 2447-2449.

Hadwiger LA (2015). Anatomy id a ninhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front Plant Sci, 6: 373.

Hazra DK (2015). Recent advancement in pesticide formulations for user and environment friendly pest management. Int J Res Rev, 2, 35-40.

Hardinge-Lyme N (2001). Chitosan-containing liquid compositions and methods for their preparation and use. U.S. Patent No. 6,323,189. 27.

Irawan D, Hasanuddin H & Lubis L (2013). Uji ketahanan beberapa varietas jagung (Zea mays L.) terhadap penyakit karat daun (Puccinia polysora Underw.) di dataran rendah. Agroekoteknologi, 1(3), 759-767.

Iriti M & F Faoro (2009). Chitosan as a MAMP searching for a PRR. Plant Signal Behav, 4, 66-68.

Itoi H, Sano H & Shibasaki K (1991). Preparation of water-soluble acylated chitosan. U.S. Patent No. 4,996,307. Washington, DC: U.S. Patent and Trademark Office.

Kalagatur NK, OS Nirmal Ghosh, N Sundararaj & V Mudili (2018). Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol, 9(610), 1-13.

Kashyap PL, Xiang X & Heiden P (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol, 77, 36-51.

Kemendag. 2017. Potret Jagung Indonesia: Menuju Swasembada Tahun 2017. ed. B. P. d. P. K. Perdagangan. Jakarta: Kemendag RI

.

Kementan. 2017. Statistik Pertanian 2017. ed. K. P. R. I. Pusat Data dan Sistem Informasi Pertanian, XLII + 362. Jakarta.

Kepmentan. 2009. Deskripsi Jagung Manis Varietas Bonanza. Lampiran No: 2071/Kpts/SR.120/5/2009.

Khati P, P Chaudhary, S Gangola, P Bhatt & A Sharma (2017). Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech, 7(1), 81-81.

Kurniawan S, Rilda Y & Arief S (2013). Efek penambahan surfaktan CTAB pada sintesis senyawa ZNO/kitosan dan karakterisasinya. Jurnal Kimia Unand, 2(4), 75-79.

Kurzawińska H & S Mazur (2013). The usefulness of chitosan and Pythium oligandrum in potato tuber protection against Helminthosporium solani. Folia Hortic, 20(2), 67-74.

Laksono RA, NW Saputro & M Syafi’i (2018). Respon pertumbuhan dan hasil beberapa varietas jagung manis (Zea mays Saccharata sturt. L) akibat takaran bokashi pada sistem Pengelolaan Tanaman Terpadu (PTT) di Kabupaten Karawang. Kultivasi, 17(1), 608-616.

Malerba M & R Cerana (2018). Recent advances of chitosan applications in plants. Polymers, 10(2), 118.

Malerba M, Crosti P, & Cerana R (2012). Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma, 249(1), 89-98.

Meng X, L Yang, JF Kennedy & S Tian (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohy Polym, 81(1), 70-75.

Mondal M, M Malek, A Puteh, M Ismail, M Ashrafuzzaman & L Naher (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian J Crop Sci, 6.

Mukta JA, M Rahman, AA Sabir, DR Gupta, MZ Surovy, M Rahman & MT Islam (2017). Chitosan and plant probiotics application enhance growth and yield of strawberry. J Biocatal Agric Biotechnol, 11, 9-18.

Nandeeshkumar P, J Sudisha, KK Ramachandra, HS Prakash, SR Niranjana & SH Shekar (2008). Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiol Mol Plant Pathol, 72(4), 188-194.

Nehra P, RP Chauhan, N Garg & K Verma (2018). Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British J Biomedical Science, 75(1), 13-18.

Pajrin J, J Panggeso & I Rosmini (2013). Uji ketahanan beberapa varietas jagung (Zea mays L.) terhadap intensitas serangan penyakit bulai (Peronosclerospora maydis). Agrotekbis, 1(2), 135-139.

Park BK & M-M Kim (2010). Applications of chitin and its derivatives in biological medicine. International J Mol Sci 11(12), 5152-5164.

Perez-de-Luque A (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front Environ Sci, 5, 12.

Pichyangkura R & S Chadchawan (2015). Biostimulant activity of chitosan in horticulture. Sci Hort 196, 49-65.

Qavami N, B Naghdi & M Mehregan (2017). Overview on Chitosan as a valuable ingredient and biostimulant in pharmaceutical industries and agricultural products. Trakia J Sci, 15(1), 83-91.

Restuati M (2008). Perbandingan chitosan kulit udang dan kulit kepiting dalam menghambat pertumbuhan kapang Aspergillus flavus. Di dalam: Prosiding Seminar Nasional Sains dan Teknologi; 2008 Nov 17; Bandar Lampung. Bandar Lampung (ID): Satek. hlm 582-590

Rahman M, JA Mukta, AA Sabir, DR Gupta, M Mohi-Ud-Din, M Hasanuzzaman, MG Miah, M Rahman & MTJPo Islam (2018). Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLOS One, 13(9), e0203769.

Romadi U, Tuszahrohm N & Kurniasari I (2019). Efektivitas Paenibacillus polymyxa dan Pseudomonas fluorescens dalam pengendalian penyakit hawar daun (Helminthosporium turcicum) pada tanaman jagung (Zea mays L.). Agrovigor: Jurnal Agroekoteknologi, 12(2), 77-81.

Romanazzi G, V Mancini, E Feliziani, A Servili, S Endeshaw & D Neri (2016). Impact of alternative fungicides on grape downy mildew control and vine growth and development. Plant Disease, 100(4), 739-748.

Saber WI, KM Ghoneem, MM El-Metwally & MA Elwakil (2009). Identification of Puccinia pimpinellae on Anise plant in Egypt and its control. Plant Pathol. J, 8(2), 32-41.

Talanca AH. 2013. Status penyakit bulai pada tanaman jagung dan pengendaliannya. In Seminar Nasional Inovasi Teknologi Pertanian. Banjarbaru: BPTP Kalsel.

Zagzog OA, MM Gad & NK Hafez (2017). Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends Hortic Res, 6(1), 673-681.

Zhang X, K Li, R Xing, S Liu & P Li (2017). Metabolite profiling of wheat seedlings induced by chitosan: Revelation of the enhanced carbon and nitrogen metabolism. Front Plant Sci, 8.




DOI: http://dx.doi.org/10.22302/iribb.jur.mp.v87i2.349

Article Metrics

Abstract view : 47 times
PDF - 15 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 E-Journal Menara Perkebunan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

CALL FOR PAPERS:

Menara Perkebunan as a communication media for research in Plantation sector opens opportunities for researchers and academics to write:
- original research results, technology development, or review of biotechnology and bioindustry and its application in agriculture, health and environment as well as other aspects of biotechnology.



MENARA PERKEBUNAN Indexed by:
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ADDRESS:

INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY
PT. RISET PERKEBUNAN NUSANTARA
Jl. Taman Kencana No. 1, Bogor 16128. Telp. 0251-8324048/8327449. Fax. 0251-8328516
E-mail : menaraperkebunanppbbi@gmail.com http://mp.iribb.org