Pengujian aktifitas antifungi kitosan, nanokitosan, dan nanokitosan-Cu secara in vitro terhadap Colletotrichum gloeosporioides pada buah mangga (Mangifera indica)
DOI:
https://doi.org/10.22302/iribb.jur.mp.v90i2.510Keywords:
Ionic gelation, poisoning food, copperAbstract
Abstract
Colletotrichum gloeosporioides, a pathogen of anthracnose disease, can significantly reduce the quality of mango (Mangifera indica) fruits. Chitosan as an antifungal agent can reduce fungal growth on post-harvest fruit of agricultural products. In its development, chitosan has been widely improved through its transformation into nanochitosan and its formulation with metals. One of the metals that has a large affinity and can be formulated with chitosan is copper (Cu). This study aimed to compare and determine the optimal concentration of chitosan, nanocithosan, and nanochitosan-Cu in suppressing the growth of C. gloeosporioides that cause decay on mango fruits. The synthesis of nanochitosan and nanochitosan-Cu was carried out by the ionic gelation method, while the characterization was performed by using particle size analyzer (PSA). The antifungal activity assay was conducted through the poisoning method by mixing a 500, 750, and 1000 ppm of chitosan, nanochitosan and nanochitosan-Cu into the growth media of C. gloeosporioides. The results of PSA analysis showed that chitosan, nanochitosan, and nanochitosan-Cu had an average size of 606.5, 386.8 and 254.1 nm, respectively. The formulation of chitosan into nanochitosan and nanochitosan-Cu was able to inhibit C. gloeosporioides with the inhibition percentages of chitosan, nanochitosan, and nanochitosan-Cu 35%, 70% and 100% in 750 ppm (0.075%, w/v), respectively.
[Keywords: Ionic gelation, poisoning food, copper]
Abstrak
Serangan cendawan penyebab antraknosa seperti Colletotrichum gloeosporioides dapat menurunkan kualitas buah mangga (Mangifera indica) secara signifikan. Kitosan sebagai agensia antifungi mampu menekan pertumbuhan cendawan pada buah pasca panen hasil pertanian. Pada perkembangannya, kitosan telah banyak dikembangkan baik melalui transformasi menjadi nanokitosan maupun formulasinya dengan logam. Salah satu logam yang memiliki afinitas besar dan dapat diformulasikan dengan kitosan adalah tembaga (Cu). Tujuan dari penelitian ini adalah untuk membandingkan dan menentukan konsentrasi optimal dari kitosan, nanokitosan, dan nanokitosan-Cu dalam menekan pertumbuhan C. gloeosporioides yang menyebabkan pembusukan pada buah mangga. Sintesis nanokitosan dan nanokitosan-Cu dilakukan dengan metode gelasi ionik yang dikarakterisasi menggunakan particle size analyzer (PSA). Uji aktivitas antifungi dilakukan dengan metode peracunan agar dengan mencampurkan kitosan, nanokitosan, dan nanokitosan-Cu pada konsentrasi 500, 750, dan 1000 ppm pada media tumbuh isolat C. gloeosporioides. Hasil analisis PSA menunjukkan bahwa kitosan, nanokitosan, dan nanokitosan-Cu memiliki ukuran masing-masing sebesar 606,5, 386,8 dan 254,1 nm. Selain itu, transformasi kitosan menjadi nanokitosan dan nanokitosan-Cu dapat meningkatkan aktifitas antifungi terhadap C. gloeosporioides dibuktikan dengan peningkatan persentase penghambatan kitosan, nanokitosan dan nanokitosan-Cu sebesar 35%, 70% dan 100% secara berturut-turut pada konsentrasi 750 ppm (0,075%, b/v).
[Kata kunci: Gelasi ionik, peracunan agar, tembaga]
Downloads
References
Arora D, V Dhanwal, D Nayak, A Saneja, H Amin, RU Rasool, PN Gupta and A Goswarni (2016). Preparation, characterization and toxicological investigation of copper loaded chitosan nanoparticles in human embryonic kidney HEK-293 cells. J. Materials Sci and Eng 6(1), 227 – 234.
Badan Pusat Statistik (BPS) (2022). Produksi tanaman buah-buahan 2021. https://www.bps.go.id/indicator/55/62/1/produksi-tanaman-buah-buahan.html. [diakses pada 6 Oktober 2022]
Badran M (2014). Formulation and In Vitro Evaluation of Flufenamic Acid Loaded Deformable Liposomes for Improved Skin Delivery. Digest Journal of Nanomaterials and Biostructures 9(1), 83–91.
Barnett HL & BB Hunter (1998). Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Mineapolis.
Beyth N, Y Houri-Haddad, A Domb, W Khan & R Hazan (2015). Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-based complementary and alternative medicine, 1-16.
Choudhary RC, RV Kumaraswamy, S Kumari, A Pal, R Raliya, P Biswas & V Saharan (2017). Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. Nanotechnology 10, 227-247.
Chowdappa P, S Gowda, CS Chethana & S Madhura (2014). Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research 8(17), 1803 – 1812.
Cooper DL, CM Conder, S Harirforoosh (2014). Nanoparticles in Drug Delivery: Mechanism of Action, Formulation and Clinical Application towards Reduction in Drug-associated Nephrotoxicity. Expert Opinion on Drug Delivery, 11(10), 1661–1680.
Eris DD, S Wahyuni, SM Putra, CA Yusup, AS Mulyatni, Siswanto, EH Krestini & C Winarti (2019). Pengaruh nanokitosan-Ag/Cu pada perkembangan penyakit antraknosa pada cabai. Jurnal Ilmu Pertanian Indonesia 24(3), 201-208.
Hadrami AE, LR Adam, IE Hadrami dan F Daayf (2010). Chtosan in Plant Protection. J Marine Drugs,8(4): 968-998.
Hao J, B Guo, S Yu, W Zhang, D Zhang & Y Wang (2017). Encapsulation Of The Flavonoid Quercetin With Chitosan-Coated NanoLiposomes. LWT-Food Science and Technology. 85, 37-44.
Hernandez-Lauzardo AN, GV Miguel & GG Maria (2011). Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research 5(25), 4243-4247.
Husniati EO (2014). Sintesis Nanopartikel Kitosan dan Pengaruhnya terhadap Inhibisi Bakteri pembusuk jus nenas. Jurnal Dinamika Penelitian Industri 25(2), 89-95.
Johansyah M (2016). Pengendalian penyakit antraknosa pada buah anga arum manis (Mangifera indica L) dengan menggunakan perlakuan air panas dan lilin lebah. Skripsi. Fakultas Pertanian-Peternakan, Universitas Muhamadiyah-Malang.
Kammona O & C Kiparissides (2012). A Review: Recent Advances in Nanocarrier-based Mucosal Delivery of Biomolecules. J Controlled Release 161(3), 781-794.
Kumowal S, Fatimawali & I Jayanto (2019). Uji aktivitas antibakteri nanopartikel ekstrak lengkuas putih (Alpinia galanga (L.) Willd) terhadap bakteri Klebsiella pneumoniae. Pharmacon: Jurnal Ilmiah Farmasi 8(4), 263-272.
Lopez-moya F, M Suarez-Fernandes & LV Lopez-Liorca (2019). Molecular mechanisms of chitosan Interaction with fungi and plants. International Journal of Molecular Sciences 20(2), 332.
Mishra P, P Singh & NN Tripathi (2014). Evaluation plant extracts against Fusarium oxysporum F. SP. Lycopersici, wilt patoghen of tomato. J. Food, Agric and Veter Sci 4(2), 163 – 167.
Mori M, M Aoyama, S Doi, A Kanethosi & T Hayashi (1997). Antifungal activity of bark extracts of deciduous trees. Holz als Roh und Werkstoff (55), 130-132.
Narayanan VS, PV Prasath, K Ravichandran, D Easwaramoorthy, Z Shahnavaz, F Mohammad, HA Al-Lohedan, S Paiman, WC Oh & S Sagadevan (2020). Schiff-base derived chitosan impregnated copper oxide nanoparticles: An effective photocatalyst in direct sunlight. Materials Science in Semiconductor Processing 119, 105238.
Pang R, Y Wang, Y Zhang & T Tsah (2010). Colletotrichum gloeosporoides association with Theobroma cacao and other plants in Panama. J. Mycologia 102(6), 1318-1338.
Prasetyo MA (2018). Sintesis nanopartikel kitosan-Cu dan uji penghambat Fusariun oxysporum penyebab penyakit layu daun pada tanaman cabai (Capsicum sp.) (Skripsi). Bogor (ID): Institut Pertanian Bogor.
Raval N, R Maheshwari, D Kalyane, SR Youngren-Ortiz, MB Chougule, RK Tekade (2019). Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development, Basic Fundamentals of Drug Delivery, 369-400. doi.org/10.1016/B978-0-12-817909-3.00010-8.
Saharan V, G Sharma, M Yadav, M Choudary, S Sharma, A Pal, R Raliya & P Biswas (2015). Synthesis and in vitro antifungal efficacy of Cu-Chitosan nanoparticles against pathogenic fungi of tomato. J. Bio Macromol 75, 346-353.
Sari RN, Nurhasni & MA Yaqin (2017). Sintesis nanopartikel ZnO ekstrak Sargassum sp. dan karakterisasi produknya. JPHPI 20(2), 238-254.
Sitepu I, L Ignatia, A Franz, D Wong, S Faulina, M Tsui, A Kanti & K Boundy (2012). An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91(2), 321–328.
Sudjarwo GW, MS Rosalia & Mahmiah (2019). Uji aktifitas antijamur nanopartikel kitosan terhadap jamur Candida albicans secara in vitro. Prosiding Seminar Nasional Kelautan XIV. Universitas Hang Tuah, 22 Juli 2019, Surabaya.
Wahyuni S, MA Prasetyo, DD Eris, Siswanto & Priyono (2020). Sintesis dan uji in vitro penghambatan nanokitosan-Cu terhadap pertumbuhan Fusarium oxysporum dan Colletotrichum capsica. Menara Perkebunan 88(1), 52-60.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.