Physiological responses of bio-silica-treated oil palm seedlings to drought stress (Tanggap fisiologi bibit kelapa sawit yang diberi bio-silika terhadap cekaman kekeringan)

Authors

  • Dian mutiara AMANAH Indonesian Research Institute for Biotechnology and Bioindustry
  • . NURHAIMI-HARIS Indonesian Research Institute for Biotechnology and Bioindustry
  • Laksmita Prima SANTI Indonesian Research Institute for Biotechnology and Bioindustry

DOI:

https://doi.org/10.22302/iribb.jur.mp.v87i1.306

Keywords:

bio-Si, drought stress, Elaeis guineensis Jacq., physiological resistance

Abstract

Silica (Si) in the form of soluble silicic acid [H4SiO4] was an element that makes plants more resistant to drought stress through biochemical or molecular processes and contributing to growth stimulation under biotic and abiotic stress conditions. The objective of this study was to determine the response of oil palm seedlings to drought stress by the bio-Si application. The experiment was arranged in complete random design (CRD) with ten replicates.  Bio-Si was developed in solid and liquid forms with a dissolved Si content at least 10% (w/v). The eight combinations of solid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of Si-solubilizing microbes (SSM), (iv-viii) 5 g NPK 15-15-15 + 2.5; 5.0; 7.5; 10 g bio-Si; and 5 g Na2SiO3.  On the other hand, liquid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of SSM, (iv-viii) 5 g NPK 15-15-15 + 25 mL; 50 mL; 75 mL; 100 mL bio-Si; and 50 mL Na2SiO3. Drought stress tolerance was analyzed by using proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure in the leave of oil palm seedlings. Based on the physiological response, this research indicates that bio-Si application could induce seedling tolerance to drought stress. The bio-Si treatments gave a positive response of proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure. The doses of 5 g NPK 15-15-15 + 7.5 g solid bio-Si and 5 g NPK 15-15-15 + 75 mL liquid bio-Si per seedling were a recommended to increase oil palm seedlings tolerance to drought stress.

[Key words: bio-Si, chlorophyll, nitrate reductase activity, Si-solubilizing microbes].

 Abstrak

Silika (Si) dalam bentuk terlarut asam silikat [H4SiO4]merupakan unsur yang dapat menyebabkan tanaman lebih tahan terhadap cekaman kekeringan melalui proses biokimia atau molekuler dan menstimulasi pertumbuhan dalam kondisi cekaman biotik dan abiotik. Tujuan dari penelitian ini adalah mengetahui respons fisiologi bibit kelapa sawit yang diberi bio-Si terhadap cekaman kekeringan. Penelitian didesain dengan rancangan acak lengkap (RAL) dan sepuluh ulangan. Bio-Si dikembangkan dalam bentuk padat dan cair dengan kadar Si terlarut minimal 10 % (b/v). Delapan aplikasi bio-Si padat per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu mikrob pelarut silika, (iv-viii) 5 g NPK 15-15-15 + 2,5 g; 5,0 g; 7,5 g; 10 g bio-Si, dan 5 g Na2SiO3. Sementara untuk aplikasi bio-Si cair per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK  15-15-15 + 109cfu mikroorganisme pelarut silika (MPS), (iv-viii) 5 g NPK 15-15-15 + 25 ml; 50 ml; 75 ml; dan 100 mLbio-Si, dan 50 ml Na2SiO3. Pengamatan yang dilakukan meliputi analisis prolin, aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata pada daun bibit kelapa sawit. Berdasarkan data fisiologi yang diperoleh dari kegiatan penelitian ini, aplikasi bio-Si dapat meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan. Perlakuan bio-Si memberikan respon positif terhadap konsentrasi prolin,aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata.Dosis 5 g NPK 15-15-15 + 7,5 g bio-Si padat dan 5 g NPK 15-15-15 + 75 mLbio-Si cair dapat direkomendasikan untuk meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan. 

 

[Kata kunci: bio-Si, klorofil, aktivitas nitrat reduktase, mikroorganisme pelarut silika].

Downloads

Download data is not yet available.

References

Ábrahám E, C Hourton-Cabassa, L Erdei, & L Szabados (2010). Methods for determination of proline in plants. Plant Stress Tolerance, Methods and Protocols. Sunkar, R (Ed.). Springer Science, Humana Press 386 p.

Ai NS & Y Banyo (2011). Konsentrasi klorofil daun sebagai indikator kekurangan air pada tanaman. Jurnal Ilmiah Sains 11, 166 - 171.

Amir, Didik I & Eka TSP (2015). Hubungan bintil akar dan aktivitas nitrat reduktase dengan serapan N pada beberapa kultivar kedelai (Glycine max). Proc. Seminar Nasional Masyarakat Biodivesitas Indonesia Volume 1 (5), 1132-1135.

Anonim (1992). Method for Determination of Silica in Water, 4500-Si-D Molybdosilicate and Heteropoly Blue Method, 4500-Si-E", Standard Methods for The Examination of Water and Wastewater. American Public Health Association, 18th Edition.

Bajguz A & S Hayat (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry 47, 1-8.

Benny WP, SPE Tarwaca, & Supriyanta (2015). Tanggapan produktivitas kelapa sawit (Elaeis guineensis Jacq.) terhadap variasi iklim. Vegetalika 4(4), 21-34.

Cao Hong-Xing, S Cheng-Xu, S Hong-Bo, & L Xin-Tao (2011). Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. African Journal of Biotechnology 10(14), 2630-2637.

Chen D, W Shiwen, Y Lina, & D Xiping (2018). How does silicon mediate plant water uptake and loss under water deficiency? Frontiers in Plant Science 9, 1-7.

Chen W, XQ Yao, KZ Cai, & J Chen (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142, 67-76.

Cvikrová M, L Gemperlová, O Martincová, & R Vanková (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry 73, 7-15.

Farooq M, A Wahid, N Kobayashi, D Fujita & SMA Basra (2009). Plant drought stress: effects, mechanism and management. Agron Sustain Dev 29, 185-212.

Goldstein JI, DE Newbury, P Echlin, DC Joy, AD Romig Jr, CE Lyman, C Fiori & E Lifshin (1992). Scanning electron microscopy and X-ray microanalysis: A text for biologist, materials Scientist, and cytologists, 2nd ed. New York, Plemun Press.

Haryanti S & T Meirina (2009). Optimalisasi pembukaan porus stomata daun kedelai (Glycine max (L) Merril) pada pagi hari dan sore. BIOMA 11 (1), 11-16.

Jaleel CA, P Manivannan, A Wahid, M Farooq, HJ Al-Juburi, R Somasundaram, & R Panneerselvam (2009). Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International J. Agric. Biol. 11 (1), 100-105.

Kadir A (2011). Respon genotipe padi mutan hasil iradiasi sinar gamma terhadap cekaman kekeringan. J. Agrivivor 10(3), 235-246.

Koentjoro, Yonny, Djoko P., Edi P., Sukendah (2017). The Effect of Silicon on Chlorophyll and Abscisis Acid Contect on Several Cultivar of Soybean Under Drought Stress. International Seminar of Research Science and Technology in Publication, Implementation and Commercialization. NST Proceedings, 166-171.

Li R, P Guo, B Michael, G Stefania, & C Salvatore (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China 5(10), 751-757.

Lisar SYS, M Rouhollah, MH Mosharraf, & MMR Ismail (2012). Water Stress in Plants: Causes, Effects and Responses. Intech : Croatia.

Mafakheri A, A Siosemardeh, B Bahramnejad, PC Struik, & Y Sohrabi (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4(8), 580-585.

Makarim AK, E Suhartatik, & A Kartohardjono (2007). Silikon: hara penting pada sistem produksi padi. Iptek Tanaman Pangan 2 (2), 195-204.

Maryani AT (2012). Pengaruh volume pemberian air terhadap pertumbuhan bibit kelapa sawit di pembibitan utama. Jurnal Fakultas Petanian Universitas Jambi 1(2), 64-74.

Merwad AMA, MD El-Sayed, & MR Mostafa (2018). Response of water deficit stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae 228, 132-144.

Miranda KM, MG Espey, & DA Wink (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 5, 62-71.Neumann PM (2008). Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101, 901-907.

Noor MRM, MH Harun, & NM Jantan (2011). Physiological plant stress and responses in oil palm. Oil Palm Bulletin 62, 25-32.

Ouzounidou G, A Giannakoula, I Ilias, & P Zamanidis (2016). Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz J Bot 39 (2), 531-539.

Pandey R (2010). Influence of certain chemicals on nitrate reductase activity and its correlation with caffeine in tea [(Camellia sinensis (L) O. Kuntze)] leaves. Journal of Plantation Crops 38 (2), 132-137.

Pei ZF, DF Ming, D Liu, GL Wan, XX Geng, HJ Gong, & WJ Zhou (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29, 106-115.

Putra ETS, Issukindarsyah, Taryono, & BH Purwanto (2015). Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J Agron 14 (2),1-13.

Rahdari P & SM Hoseini (2012). Drought stress: A review. International journal of Agronomy and Plant Production 3 (10), 443-446.

Sankar B, CA Jaleel, P Manivannan, A Kishorekumar, R Somasundaram, & R Panneerselvam (2008). Relative efficacy of water uses in five varieties of Abelmoschus esculentus (L.) Moench. under water-limited conditions. Colloids Surf. B: Biointerfaces 62,125-129.

Santi LP & DH Goenadi (2017). Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 2017, 85(2), 95-104.

Santi LP, Mulyanto D, & Goenadi DH (2017). Double Acid-Base Extraction of Silicic Acid from Quartz Sand. Journal of Minerals and Materials Characterization and Engineering. 5(6): 362-373.

Santi LP, Nurhaimi-Haris, & Mulyanto (2018). Effect of bio-silica on drought tolerance in plants. 5(6): 362-373. IOP Conf. Series: Earth and Environmental Science 183, 1-8.

Shao HB, LY Chu, CA Jaleel, & CX Zhao (2008). Water-deficit stress-induced anatomical changes in higher plants. Comp Rend Biol 331, 215-225.

Shyam R & NC Aery (2012). Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. Journal of Soil Science and Plant Nutrition 12 (1), 1-14.

Silva PA, VS Cosme, & KCB Rodrigues (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta Physiol Plant 39 (58), 1-12.

Sokoto MB & A Muhammad (2014). Response of rice varieties to water stress in Sokoto, Sudan Savannah, Nigeria. J Bioscie Med 2, 68-74.

Talbot MJ & GW Rosemary (2013). Methanol fixation of plant tissue for scanning electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9 (36), 1-7.

Wang YY, PK Hsu , & YF Tsay (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 968 17, 458-467.

Wellburn AR (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144 (3), 307-313.

Wu QS, RX Xia, & YN Zou (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology 44(1), 122-128.

Xu Z, G Zhou & H Shimuzu (2010). Plant responses to drought and rewatering. Plant Signal Behav 5, 649-654.

Zandalinasa SI, R Mittlerb, D Balfagóna, V Arbonaa, & A Gómez-Cadenasa (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162, 2-12.

Zhu Y & H Gong (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34, 455-472.

Downloads

Submitted

06-04-2018

Accepted

14-04-2019

Published

07-05-2019

How to Cite

AMANAH, D. mutiara, NURHAIMI-HARIS, ., & SANTI, L. P. (2019). Physiological responses of bio-silica-treated oil palm seedlings to drought stress (Tanggap fisiologi bibit kelapa sawit yang diberi bio-silika terhadap cekaman kekeringan). Menara Perkebunan, 87(1). https://doi.org/10.22302/iribb.jur.mp.v87i1.306

Most read articles by the same author(s)

<< < 1 2 3 > >>