Potential use of Claroideoglomus etunicatum to enrich signal grass (Brachiaria decumbens Stapf.) for silvopasture preparation


  • Risa ROSITA SEAMEO BIOTROP, Jl. Raya Tajur Km.6 Bogor 16134, Indonesia
  • Rahayu WIDIASTUTI Bogor Agricultural University (Darmaga Campus of IPB Bogor)
  • Irdika MANSUR Bogor Agricultural University (Darmaga Campus of IPB Bogor), SEAMEO BIOTROP (SEAMEO BIOTROP, Jl. Raya Tajur Km.6 Bogor 16134, Indonesia)
  • Sarah Asih FAULINA Forest Products Research and Development Center (Forest Products Research and Development Center, Jl. Gunung Batu No.5 Bogor)




AMF inoculation, number of spores, zeolite


Silvopasture system improvement in managing post-mining land resources has been done by searching for a quality grass. One of the selected grass species is signal grass (Brachiaria decumbens Stapf.). This research aimed to prepare signal grass through the inoculation of AMF Claroideoglomus etunicatum, as an effort to enrich its growth before being applied to post-mining soil. Research stages included the AMF inoculation on signal grass through spore culture and then transferred the colonized grass to the pot using sterile zeolite as a growth medium. The treatment on the first stage was without and with AMF inoculation (dose of 20 spores) on signal grass which was repeated for 12 times. Incubation in a spore culture was 4 weeks while incubation in a pot containing sterile zeolite medium was 8 weeks. Research data were analyzed using the Shapiro-Wilk’s normality test, Independent Sample T-test, and Pearson’s correlation test. Observation results showed that the inoculation of C. etunicatum on signal grass was significantly impact on the increase of plant height, stem diameter, number of leaves, number of tillers, shoot and root fresh weight, and shoot dry weight (p <0.05). Microscopic observation showed that there was AMF colonization on treated signal grass roots in the amount of 55 ± 0.06 % with number of spores was 252 ± 9.82 per 10 g zeolites, while AMF infection was not found in uninoculated signal grass. It is expected that by providing signal grass inoculated with AMF C. etunicatum would support its growth in post-mining land for Silvopasture system.


Download data is not yet available.


Aainaa HN, OH Ahmed, S Kasim & NMA Majid (2014). Reducing Egypt rock phosphate use in Zea mays cultivation on an acid soil using clinoptilolite zeolite. Sustainable Agriculture Research 4(1):56–66.

Al-Karaki GN (2016). Application of mycorrhizal fungi in landscape turfgrass establishment under arid and semiarid environments. Agrofor 1(2), 154-161.

Amir H, P Jourand, Y Cavaloc & M Ducousso (2014). Role of mycorrhizal fungi in the alleviation of heavy metal toxicity in plants. In: Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Berlin, Heidelberg Springer. p. 241-258.

Araujo J, BH Martins, VY Higashi & CA Hamanaka (2015). The role of weed and cover crops on soil and water conservation in a tropical region. In: Weed Biology and Control. Rijeka Croatia, InTech Publisher. p. 1-18.

Azimi R, GA Heshmati, M Farzam & M Goldani (2019). Effect of Mycorrhiza, Zeolite and Superabsorbent on Growth and Primary Establishment of Agropyron desertorum in Mining Field (Case Study: Mashhad′ Shargh Cement Factory, Iran). Journal of Rangeland Science 9(2), 172-183.

Baghaie AH, F Aghili & R Jafarinia (2019). Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environmental Science and Pollution Research 26(30), 30794-30807.

Bago B, PE Pfeffer, J Abubaker, J Jun, JW Allen, J Brouillette, DD Douds, PJ Lammers & Y Shachar-Hill (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology 131, 1496–1507.

Bago B, W Zipfel, RM Williams, J Jun, R Arreola, PJ Lammers & Y Shachar-Hill (2002). Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology 128(1), 108–124.

Basuki (2013). Pengaruh cendawan mikoriza arbuskula (CMA) terhadap karakteristik

agronomi tanaman tebu sistem tanam bagal satu. E-Journal Menara Perkebunan 81(2), 49-53

Becker WN & JW Gerdemann (1977). Glomus etunicatum. Diunduh dari http://www.zor.zut.edu.pl/Glomeromycota/Glomus%20etunicatum.html. [1 Maret, 2020]

Begum N, C Qin, MA Ahanger, S Raza, MI Khan, M Ashraf, N Ahmed & L Zhang (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10, 1068. http://dx.doi:10.3389/fpls.2019.01068

Behrooz A, K Vahdati, F Rejali, M Lotfi, S Sarikhani & C Leslie (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54(6), 1087-1092. https://doi.org/10.21273/HORTSCI13961-19

Brundrett M (1991). Mycorrhizal in Natural Ecosystem. Academic Press Limited.

Cavagnaro RA, M Oyarzabal, M Oesterheld & AA Grimoldi (2014). Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassland Science 60(3), 178-184. http://dx.doi: 10.1111/grs.12057

Covacevich F & RLL Berbara (2011). Indigenous arbuscular mycorrhizae in areas with different successional stages at a tropical dry forest biome in Brazil. African J. of Microbiol Research 5(18), 2697-2705.

Dodd JC, Clapp JP & Zhao B (2001). Arbuscular mycorrhizal fungi in plant production systems : detection, taxonomy, conservation and ecophysiology. Laboratory of Agricultural Microbiology, Huazhong Agricultural University China.

Elviwirda, Sufardi & Syakur (2016). Aplikasi mikoriza untuk meningkatkan pertumbuhan beberapa jenis rumput makanan ternak terhadap cekaman kekeringan pada tanah podsolik Jantho. J. Floratek 11(2), 152-158.

Fanindi A (2016). Respon fisiologis rumput Brachiaria sp. pada lahan masam. WARTAZOA 26(3), 143-150.

Gavito ME, PA Olsson, H Rouhier, AM Penafiel, I Jakobsen, A Bago & CA Aguilar (2005). Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytologist 168(1), 179-188.

Gomes MP, PAS Moura, CC Nascentes & MR Scotti (2015). Arbuscular Mycorrhizal Fungi and Arsenate Uptake by Brachiaria Grass (Brachiaria decumbens). Bioremediation Journal 19(2), 151-159.

Halim, MJ Arma, Sarawa, TC Rakian, M Tufaila, Resman, FS Rembon, WSA Hisein, Syair, Mariadi & AM Kandari (2019). Propagation spores of arbuscular mycorrhizal fungi and rooting colonisation characteristic’s on different host plants. GSC Biological and Pharmaceutical Sciences 8(1), 078-083.

Hammer EC & MC Rillig (2011). The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus—salinity increases glomalin content. PLoS One 6(12). http://dx.doi.org/10.1371/journal.pone.0028426

Helber N, K Wippel, N Sauer, S Schaarschmidt, B Hause & N Requena (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. The Plant Cell 23, 3812–3823.

Jakkula VS & SP Wani (2018). Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Scientific Reviews & Chemical Communications 8(1), 1-15.

Khodavandi A & F Alizadeh (2015). Gene expression profiling of fatty acid biosynthetic pathway during interaction of oil palm (Elaeis guineensis Jacq.) with the mutualistic fungus Glomus etunicatum. Acta physiologiae plantarum 37(11), 221.

Labidi S, FB Jeddi, B Tisserant, M Yousfi, M Sanaa, Y Dalpé & ALH Sahraoui (2014). Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25(4), 297–309. https://doi:10.1007/s00572-014-0609-0

Low S (2015). Signal grass (Brachiaria decumbens) toxicity in grazing ruminants. Agriculture 5(4), 971-990.https://doi:10.3390/agriculture5040971

Nusantara AD, YH Bertham & I Mansur (2012). Bekerja dengan Fungi Mikoriza Arbuskula. Bogor, SEAMEO BIOTROP.

Purakayastha TJ & PK Chhonkar (2001). Influence of vesicular-arbuscular mycorrhizal fungi ( Glomus etunicatum L.) on mobilization of zinc in wetland rice ( Oryza sativa L.). Biology and Fertility of Soils 33(4), 323–327. http://doi:10.1007/s003740000330

Rahayu YR (2014). The role mychorhizae and Rhizobium to increase plant tolerance grown on saline soil. In: Proc Int Conf on Research. Yogyakarta, 18-20 May 2014 p 195-202.

Rini MV & U Efriyani (2016). Respons bibit kelapa sawit (Elaeis guineensis Jacq.) terhadap pemberian fungi mikoriza arbuskular dan cekaman air [Oil palm (Elaeis guineensis Jacq.) seedling response to application of arbuscular mycorrhiza fungi and water stress]. E-Journal Menara Perkebunan 84(2), 106-114. http://dx.doi.org/10.22302/iribb.jur.mp.v84i2.225

Rosalina F, MA Gafur, I Irnawati, MH Soekamto, Z Sangadji & MS Kahar (2019). Utilization of compost and zeolite as ameliorant on quartz sand planting media for caisim (Brassica juncea) plant growth. In: Journal of Physics: Conference Series 1155(1), p 012055.

Saidi A, EF Husin, A Rasyidin & Eddiwal (2014). Selection of arbuscular mycorrhizal fungi (AMF) indigenous in ultisol for promoting the production of glomalin and aggregate formation process. International Journal on Advanced Science Engineering Information Technology 4(6), 430-435.

Samanhudi AY, B Pujiasmanto & M Rahayu (2014). Effect of organic manure and arbuscular mycorrhizal fungi on growth and yield of young ginger (Zingiber officinale Rosc.). IOSR Journal of Agriculture and veterinary Science 7(5), 1-5.

Schenck NC & GS Smith (1982). Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytologist 92(2), 193-201.

Schüßler A & C Walker (2010). The Glomeromycota: a species list with new families and new genera. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University, 19.

Setyaningsih L, AS Wulandari & Hamim (2018). Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi. Biodiversitas Journal 19(2), 504-509.

Shachar-Hill Y, PE Pfeffer, D Douds, SF Osman, LW Doner & RG Ratcliffe (1995). Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiology 108, 7–15. doi: 10.1104/pp.108.1.7

Smith S & D Read (2008). Mycorrhizal Symbiosis. Academic Press London.

Srimathi PL, K Karunanandham, R Arthee & P Pandiyarajan (2014). Identification of Arbuscular mycorrhizal multiplicity in the saline-sodic soils. International Journal of Agricultural and Biology Engineering 7(2), 56-67.

Talbi Z, AE Asri, J Touati, M Chliyeh, FA Aguil, K Selmaoui, F Sghir, AO Touhami, R Benkirane & A Douira (2015). Morphological characterization and diversity of endomycorrhizae in the rhizosphere of Carob tree (Ceratonia siliqua) in Morocco. Biolife 3(1), 196-211.

Tawaraya K, K Hashimoto & T Wagatsuma (1998). Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8(2), 67-70.

Tchabi A, D Coyne, F Hountondji, L Lawouin, A Wiemken & F Oehl (2010). Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Applied Soil Ecology 45(2), 92–100. doi:10.1016/j.apsoil.2010.03.001

Wulandari D & R Rosita (2016). Karakteristik Kimiawi Tanah dan Koleksi Mikroba Tanah yang Bermanfaat dalam Mendukung Perbaikan Lahan dan Rehabilitasi Hutan di Lahan Bekas Tambang Timah, Bangka Indonesia. [laporan akhir]. Bogor: SEAMEO BIOTROP.

Wu QS, AK Srivastava & Y Li (2015). Effects of Mycorrhizal Symbiosis on Growth Behavior and Carbohydrate Metabolism of Trifoliate Orange Under Different Substrate P Levels. Journal of Plant Growth Regulation, 34(3), 499–508. doi:10.1007/s00344-015-9485-x

Zheng J, T Chen, D Chi, G Xia, Q Wu, G Liu & KH Siddique (2019). Influence of Zeolite and Phosphorus Applications on Water Use, P Uptake and Yield in Rice under Different Irrigation Managements. Agronomy 9(9), 537.

Zhu XC, FB Song, SQ Liu, TD Liu & X Zhou (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ, 58(4), 186-191.








How to Cite

ROSITA, R., WIDIASTUTI, R., MANSUR, I., & FAULINA, S. A. (2020). Potential use of Claroideoglomus etunicatum to enrich signal grass (Brachiaria decumbens Stapf.) for silvopasture preparation. Menara Perkebunan, 88(1). https://doi.org/10.22302/iribb.jur.mp.v88i1.364