Potensi ekstrak kasar metabolit sekunder yang dihasilkan Trichoderma asperellum dan Pseudomonas fluorescens untuk pengendalian antraknosa pada buah kakao


  • Christina Oktora Matondang Balai Besar Perbenihan dan Proteksi Tanaman Perkebunan
  • Muklasin Balai Besar Perbenihan dan Proteksi Tanaman Perkebunan
  • Loekas Soesanto Fakultas Pertanian, Universitas Jenderal Soedirman




anthracnose pod rot, antagonistic microbes, bioactive compound , field tests


Cocoa pod anthracnose is an important disease of cocoa and can reduce yields. Many attempts have been made to control anthracnose rot disease on cocoa pods but have not been successful yet. This study aimed to examine the potency of secondary metabolite crude extracts produced by Trichoderma asperellum and Pseudomonas fluorescens solely or in combination in controlling anthracnose rot disease of cocoa pods in the field at Silo Bonto Village, Asahan Regency, North Sumatera Province. The secondary metabolite crude extracts was prepared by the form of conidia or T. asperellum and P. fluorescens cells. A randomized block design was used to assessed four treatments i.e. T. asperellum + P. fluorescens, T. asperellum, P. fluorescens secondary metabolite crude extracts and control, which was repeated six times. The observation parameters were the percentage of healthy and diseased pods (anthracnose fruit rot). The results showed that the secondary metabolite crude extracts of T. asperellum, P. fluorescens, and T. asperellum + P. fluorescens reduced the number of diseased fruits by 94.71, 89.09, and 92.09% compared to the control respectively. The increasing of  healthy fruits number in the application of secondary metabolite crude extracts of T. asperellum, P. fluorescens, and T. asperellum + P. fluorescens was 52.68, 54.20, and 54.18%, respectively.


Download data is not yet available.


Adnan, M., Islam, W., Shabbir, A., Khan, K. A., Ghramh, H. A., Huang, Z., Chen, H. Y. H., & Lu, G. D. (2019). Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis 129, 7–18. 10.1016/j.micpath.2019.01.042

Alsohim, A. S. (2020). Influence of Pseudomonas fluorescens mutants produced by transposon mutagenesis on in vitro and in vivo biocontrol and plant growth promotion. Egyptian Journal Biological Pest Control 30(19). 10.1186/s41938-020-00220-5

Asare, E. K., Avicor, S. W., Pobee, P., Bukari, Y., & Amoako-Attah, I. (2021). Colletotrichum gloeosporioides s.l. causes an outbreak of anthracnose of cacao in Ghana. South African Journal of Plant and Soil 38(2), 107–115. 10.1080/02571862.2020.1863485

Badan Pusat Statistik (2020). Statistika Kakao Indonesia. Badan Pusat Statistik, Jakarta. 82 hlm.

Bock, C. H., Chiang, K. S, & Ponte, E. M. D. (2022). Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Tropical Plant Pathology 47, 25–42. 10.1007/s40858-021-00439-z

Boik, J., Kirakosyan, A., Kaufman, P. B., Seymour, E. M., & Spelman, K. (2009). Interactions of bioactive plant metabolites: Synergism, antagonism, and additivity. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. 10.1007/978-1-4419-0194-1_10.

Buddhika, U. V. A., & Abeysinghe, S. (2021). Secondary Metabolites from Microbes for Plant Disease Management. In: K. P. Singh, S. Jahagirdar, B. K. Sarma (Eds.), Emerging Trends in Plant Pathology. Springer, Singapore. 10.1007/978-981-15-6275-4_15.

Decoin, V., Barbey, C., Bergeau, D., Latour, X., Feuilloley, M. G. J., Orange, N., Merieau, A. (2014). A Type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS ONE 9(2): e89411. 10.1371/journal.pone.0089411

Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9, 749–759. 10.1038/nrmicro2637

Evans, H. C., & Prior, C. (1987). Cocoa pod diseases: Causal agents and control. Outlook on Agriculture 16(1), 35–41. 10.1177/003072708701600106

Fang, F., Oliva, M., Ehi-Eromosele, S., Zaccai, M., Arazi, T., & Oren-Shamir, M. (2018). Successful floral-dipping transformation of post-anthesis lisianthus (Eustoma grandiflorum) flowers. Plant Journal. 96(4), 869-879. DOI: 10.1111/tpj.14076

Gajera, H. P., & Vakharia, D. N. (2012). Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Brazilian Journal of Microbiology (2012), 43–52.

Gautam, A. K. (2014). Colletotrichum gloeosporioides: Biology, pathogenicity andmanagement in India. Journal of Plant Physiology & Pathology 2(2). 10.4172/2329-955X.1000125

Ghazanfar, M. U., Raza, M., Raza, W., & Qamar, M. I. (2018). Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protection 02(03), 109–135.

Govindaraj, K., & Jancirani, P. (2017). Effect of pruning on cocoa (Theobroma cacao L) on morphological, flowering and yield and quality of cocoa beans. International Journal of Agricultural Science and Research (IJASR) 7(6), 113–118.

Guest, D. (2007). Black pod: diverse pathogens with a global impact on cocoa yield. Phytopathology 97(12), 1650–1653. 10.1094/PHYTO-97-12-1650

Hudson, O., Waliullah, S., P, Ji., & Ali, M. d. E. (2021). Molecular characterization of laboratory mutants of Fusarium oxysporum f. sp. niveum resistant to prothioconazole, a demethylation inhibitor (DMI) fungicide. Journal of Fungi, 7(9), 704. 10.3390/jof7090704

Huebner, M., Vach, W., & Cessie, S. I. (2016). A systematic approach to initial data analysis is good research practice. The Journal of Thoracic and Cardiovascular Surgery 151(1), 25–27. 10.1016/j.jtcvs.2015.09.085

Jain, A., & Das, S. (2016). Insight into the interaction between plants and associated fluorescent Pseudomonas spp. International Journal of Agronomy. 10.1155/2016/4269010

Keswani, C., Sing, H. B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y. W., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Vinale, F., & Sansinenea, E. (2019). Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology 103, 9287–9303. 10.1007/s00253-019-10209-2

Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., Vágvölgyi, C., & Nagy, E. (2005). Extracellular proteases of Trichoderma species. Acta Microbiologica et Immunologica Hungarica 52(2), 169–84. 10.1556/AMicr.52.2005.2.3

Kumar, G., Maharshi, A., Patel, J., Mukherjee, A., Singh, H. B., & Sarma, B. K. (2017). Trichoderma: A potential fungal antagonist to control plant diseases. SATSA Mukhapatra Annual Technical Issue 21, 206–218.

Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development 39(5). 10.1007/s13593-018-0552-0

Lamichhane, J. R., & Varvaro, L. (2013). A new medium for the detection of fluorescent pigment production by pseudomonads. Plant Pathology 62, 624–632.

Mohanan, R. C., Kaveriappak, M., & Nambiar, K. N. (2008). Epidemiological studies of Colletotrichum gloeosporioides disease of cocoa. Annals of Applied Biology 114(1), 15–22. 10.1111/j.1744-7348.1989.tb06783.x

Mukherjee, P. K., Buensanteai N., Morán-Diez, M. E., Druzhinina, I., & Kenerley, C. M. (2012). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158, 155–165. 10.1099/mic.0.052159-0

Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma– a genomic perspective. Microbiology 158, 35–45. 10.1099/mic.0.053629-0

Munir, S., Jamal, Q., Bano, K., Sherwani, S. K., Bokhari, T. Z., Khan, T. A., Khan, R. A., Jabbar, A., & Anees, M. (2013). Biocontrol ability of Trichoderma. International Journal of Agriculture Crop Sciences 6(18), 1246–1252.

Mutawila, C., Vinale, F., Halleen, F., Lorito, M., & Mostert, L. (2015). Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathology 65(1), 104–113. 10.1111/ppa.12385

Muturi, E. J., Donthu, R. K., Fields, C. J., Moise, I. K., & Kim, C. H. (2017). Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports. 7, 44565. 10.1038/srep44565

Ndoumbe-Nkeng, M., Cilas, C., Nyemb, E., Nyasse, S., Bieysse, D., Flori, A., & Sache, I. (2004). Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection 23(5), 415-424. 10.1016/j.cropro.2003.09.010

Pathma, J., Rahul, G. R., Kamaraj, K. R., Subashri, R., & Sakthivel, N. (2011). Secondary metabolite production by bacterial antagonists. Biological Control 25(3), 165–181. 10.18311/jbc/2011/3716

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Research 183, 26–41. 10.1016/j.micres.2015.11.007

Rauf, S., Ali, Y., Hussain, S., Ullah, F., & Hayat, A. (2018). Design of a novel filter paper based construct for rapid analysis of acetone. PLOS ONE 13(7), e0199978. 10.1371/journal.pone.0199978

Sahu, B., Singh, J., Shankar, G., & Pradhan, A. (2018) Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: A review. International Journal of Chemical Studies 6(2), 01–07.

Santra, H. K., & Banerjee, D. (2020). Natural products as fungicide and their role in crop protection. Natural Bioactive Products in Sustainable Agriculture. 131–219. 10.1007/978-981-15-3024-1_9

Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., & Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences 64(1): 71-78. 10.1016/j.aoas.2019.05.002

Simamora, M., Basyuni, M., & Lisnawati, L. (2021). Potency of secondary metabolites of Trichoderma asperellum and Pseudomonas fluorescens in the growth of cocoa plants affected by vascular streak dieback. Biodiversitas 22(5), 2542–2547. 10.13057/biodiv/d220511

Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research 9(16), 1265–1277. 10.5897/AJAR2013.7914

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2014). Aplikasi formula cair Pseudomonas fluorescens P60 untuk menekan penyakit virus cabai merah. Jurnal Fitopat Indonesia 9(6), 179–185. 10.14692/jfi.9.6.179

Soesanto, L., Mugiastuti, E., Suyanto, A., & Rahayuniati, R. F. (2020). Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. Jurnal Hama dan Penyakit Tumbuhan Tropika 20(1), 19–27. 10.23960/j.hptt.12019-27

Soesanto, L., Mugiastuti, E., & Manan, A. (2021). The use of alternative liquid media for propagation of pathogenic fungi and their effect on weeds. Biodiversitas 22(2), 719–725. 10.13057/biodiv/d220224

Verma, C., Jandaik, S., Gupta, B. K., Kashyap, N., Suryaprakash, V. S., Kashyap, S., & Kerketta, A. (2020). Microbial metabolites in plant disease management: Review on biological approach. International Journal of Chemical Studies 8(4): 2570-2581. 10.22271/chemi.2020.v8.i4ad.10026

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Ruocco, M., Woo, S. L., & Lorito, M. (2012). Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communication 7(11), 1545–1550. 10.1177/1934578X1200701133

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8(Suppl-1, M5), 127–139.

Yun, H. G., Kim, D. J., Gwak, W. S., Shin, T. Y., & Woo, S. D. (2017). Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology 45(3), 192– 198. 10.5941/MYCO.2017.45.3.192

Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma Chemistry meets genomics. Fungal Biology Reviews 30(2), 74-90. 10.1016/j.fbr.2016.05.001








How to Cite

Matondang, C. O., Muklasin, & Soesanto, L. (2023). Potensi ekstrak kasar metabolit sekunder yang dihasilkan Trichoderma asperellum dan Pseudomonas fluorescens untuk pengendalian antraknosa pada buah kakao. Menara Perkebunan, 91(1), 87–95. https://doi.org/10.22302/iribb.jur.mp.v91i1.524