In silico phylogenetic, physicochemical, and structural characteristics of phytase enzyme from ten Aspergillus species

Authors

  • Ridwan Putra Firmansyah IPB University https://orcid.org/0000-0002-6433-5059
  • Shobiroh Nuur Alimah IPB University
  • I Made Artika IPB University
  • Popi Asri Kurniatin Departemen Biokimia, FMIPA, IPB University

DOI:

https://doi.org/10.22302/iribb.jur.mp.v92i1.559

Keywords:

Phytic acid, molecular docking, Structure modelling, Superpose

Abstract

Phytic acid is a chemical compound consisting of inositol and phosphoric acid and is an antinutrient compound found in monogastric poultry feed ingredients made from cereal crops. Phytase hydrolyzes phosphoester bonds in phytic acid, releasing inorganic phosphate and phosphate esters. Aspergillus is a genus of molds that produce phytase and has been widely used in phytase production because they are easy to culture. This study aims to compare the structures, physicochemical characteristics, and phylogenetic relationships of phytases from several species of Aspergillus in silico as an initial screening step in obtaining the most suitable phytase to be used in poultry feed. Phylogenetic trees were constructed using MEGA 11 and physicochemical characteristics were analyzed using ProtParam. Protein structures were modeled with AlphaFold. The phytase structures were then docked with phytic acid using the YASARA Structure. The results showed that phytase 1QFX from Aspergillus niger, P34755 from A. awamori, and D5HQ11 from A. ficuum have very high similarity in terms of phylogenetics, sequences, physicochemical characteristics, and protein structures. The docking results from the three phytase structures showed that phytase 1QFX has the most negative ΔG value and the lowest Kd, which indicated the highest affinity to the phytic acid substrate. This research concludes that among the three phytase structures that have been compared and docked with phytic acid, phytase 1QFX from A. niger is the most suitable to be applied to poultry feed.

Downloads

Download data is not yet available.

Author Biographies

Ridwan Putra Firmansyah, IPB University

Department of Biochemistry, IPB University

Shobiroh Nuur Alimah, IPB University

Department of Biochemistry, IPB University

I Made Artika, IPB University

Department of Biochemistry, IPB University

References

Abusham, R. A. K., Masomian, M., Salleh, A. B., Leow, A. T. C. & Rahman, R. N. Z. (2019). An in-silico approach to understanding the structure-function: a molecular dynamics simulation study of rand serine protease properties from Bacillus subtilis in aqueous solvents. Adv Biotech & Micro, 12(1), 9-17.

Agistia, D. D., Purnomo, H., Tegar, M. & Nugroho, A. E. (2013). Interaksi senyawa aktif dari Aegle marmelos L. (Correa) sebagai anti inflamasi dengan reseptor COX-1 dan COX-2. Traditional Medicine Journal, 18(2), 80-87.

Akdel, M., Durairaj, J., de Ridder, D. & van Dijk, A. D. J. (2020). Caretta – a multiple protein structure alignment and feature extractionsuite. Computational and Structural Biotechnology Journal, 18, 981–992. https://doi.org/10.1016/j.csbj.2020.03.011

Azhari, A., Jalaludin, D. & Irawan, A. (2017). Proteomik: database dan teknologi. Quantum: Jurnal Inovasi Pendidikan Sains, 8(1), 1-12.

Bintang, M., Rahmawati, F., Safira, U. M. & Andrianto, D. (2020). Biokimia fisik. IPB Press.

Coban, H. B. & Demirci, A. (2017). Handbook of food bioengineering. Academic Press

Cominelli, E., Pilu, R. & Sparvoli, F. (2020). Phytic acid and transporters: what can we learn from low phytic acid mutants. Plants, 9(69), 1-20.

Daugelaite, J., O’Driscoll, A. & Sleator, R. D. (2013). An overview of multiple sequence alignments and cloud computing in bioinformatics. ISRN Biomathematics, 2013, 1-14. http://dx.doi.org/10.1155/2013/615630

Dermawan, D., Sumirtanurdin, R. & Dewantisari, D. (2019). Simulasi dinamika molekular reseptor estrogen alfa dengan andrografolid sebagai anti kanker payudara. IJPST, 6(2), 65-76.

Erna, M., Emriadi, Alif A. & Arief, S. (2016). Sifat termodinamika dan karakterisasi inhbisi korosi nano-partikel kitosan pada permukaaan baja lunak dalam media air gambut. Alchemy, 12(1), 27-35.

Gómez, D. C. N., Hoyos, C. M. R., Álvarez, E. D. M., Montaño, E. A. R., Alejo, N. E. V., Casallas, I. N. R., Türkmen, K. E., Suárez, H. S., Moreno, J. A. S., Piñales, R. A. P., Santos, J. G. & Galvis, A. A. (2017). In silico characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger. Enzyme Research, 2017, 1-23. https://doi.org/10.1155/2017/9746191

Irfanuddin (2018). Karakteristik biomolekuler mutasi amyloid precursor protein sebagai penyebab penyakit alzheimer yang dianalisis melalui media bioinformatika. Sriwijaya Journal of Medicine, 1(1), 61-73.

Jumper, J., Evans, R., Pritzel, A. et al. (2021). Highly accurated protein structure predicyion with AlphaFold. Nature, 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2

Karunasekera, H. (2013). Molecular identification and phylogenic analysis by sequencing the rDNA of copper-tolerant soft-rot Phialophora spp. International Biodeterioration and Biodegrada-tion, 82, 45-52

Kaur, A., Pati, P. K., Pati, A. M. & Nangpal, A. K. (2020). Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE, https://doi.org/10.1371/journal.pone.0239836

Kostrewa, D., Wyss, M., D’Arcy, A. & Loon, A. P. G. M. V. (1999). Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. Journal of Molecular Biology, 288(5), 965-974. https://doi:10.1006/jmbi.1999.2736

Lei, X. G., Weaver, J. D., Mullaney, E. & Ullah, A. H., Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Reviews in Advance, 1(1), 1-27. https://doi.org/10.1146/annurevanimal-031412-103717.

Li, Y. C. & Lu, Y. C. (2019). BLASTP-ACC: parallel architecture and hardware accelerator design for blast-based protein sequence alignment. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1771-1782.

Madden, J. C., Enoch, S. J., Paini, A. & Cronin, M. T. D. (2020). A review of in silico tools as alternatives to animal testing: principles, resources and applications. Alternatives to Laboratory Animals, 48(4), 146–172. http://dx.doi.org/10.1177/026119292096597

Meyer, M., Wohlfahrt, G., Knäblein, J. & Schomburg, D. (1998). Aspects of the mechanism of catalysis of glucose oxidase: A docking, molecular mechanics and quantum chemical study. Journal of Computer-Aided Molecular Design, 12(5), 425- 440. https://doi.org/10.1023/A:1008020124326

Mizana, D. K., Suharti, N. & Amir, A. (2016). Identifikasi pertumbuhan jamur Aspergillus sp pada roti tawar yang dijual di Kota Padang berdasarkan suhu dan lama penyimpanan. Jurnal Kesehatan Andalas, 5(2), 355-360.

Ningsih, D. A., Kusdiyantini, E. & Raharjo, B. (2017). Uji aktivitas enzim fitase yang dihasilkan oleh Aspergillus niger dan Neurospora sp. pada kondisi fermentasi yang berbeda. Jurnal Biologi, 6(4), 19-28.

Nurhikmah. (2017). Isolasi dan skreening bakteri endofit penghasil enzim fitase dari tanaman jagung (Zea mays). Departemen Biologi, Universitas Islam Negeri Alauddin, Makassar.

Pangestika, Y., Budiharjo, A. & Kusumaningrum, H. P. (2015). Analisis filogenetik Curcuma zedoaria (temu putih) berdasarkan gen internal transcribed spacer (ITS). Jurnal Biologi, 4(4), 8-13.

Peter, I., Maxwell, Paul & L. A. Popelier. (2017). Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective. Journal of Computational Chemistry, 38(29), 2459-2474. https://doi.org/10.1002/jcc.24904

Pramanik, K., Pal, P., Soren, T., Mitra, S., Ghosh, P. K., Sarkar, A. & Maiti, T. S. (2018). In silico structural, functional and phylogenetic analysis of Klebsiella phytases. Journal of Plant Biochemistry and Biotechnology, 5(1), 362-372. https://doi.org/10.1007/s13562-018-0445-y

Pratiwi, N.W.K., El Auly, F., Amrulloh, R. & Kurniawati, F. (2020). Deteksi dan identifikasi nematoda puru akar (Meloidogyne spp.) pada tanaman bit menggunakan metode DNA barcoding. Jurnal Fitopatologi Indonesia. 16(1), 1-8. https://doi.org/10.14692/jfi.16.1.1–8

Purnamasari L & Miswar (2018). Phytase enzyme characteristic of Bacillus subtilis to increase the quality of poultry feed. Journal of Livestock Science and Production. 2(2), 93-98.

Ramdani ED, Yanuar A & Tjandrawinata RR (2019). Comparison of dopamine D2 receptor (homology model and X-ray structure) and virtual screening protocol validation for the antagonism mechanism. Journal of Applied Pharmaceutical Science. 9(9), 17-22. https://doi.org/10.7324/JAPS.2019.90903

Rasyid, E.K.P.(2017). Tingkat hidrolisis asam fitat pada berbagai pakan broiler dengan penambahan fitase bakteri endofit asal tanaman jagung (Zea mays) secara in vitro. [Skripsi] Departemen Biologi, Universitas Islam Negeri Alauddin.

Schmidt, T., Bergner, A. & Schwede, T. (2013). Modeling three-dimensional protein structures for applications in drug design. Drug Discovery Today, 19(7), 890- 897.

Silvia, E. O. & Bracarense, A. P. F. R. L. (2016). Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science, 81(6), 1357- 1362. https://doi.org/10.1111/1750-3841.13320.

Suhadi, A., Rizarullah, R. & Feriyani. (2019) Simulasi docking senyawa aktif daun binahong sebagai inhibitor enzim aldose reductase. Jurnal Penelitian Kesehatan, 6(2), 55-65. http://dx.doi.org/10.22435/sel.v6i2.1651

Syaifurrisal, A. (2014). Pengaruh penyimpanan pakan udang komersial dengan penambahan volume air berbeda terhadap pertumbuhan jamur dan kandungan protein kasar. [Skripsi] Departemen Kimia, Universitas Airlangga.

Tindi, M., Mamangkey, N.G. & Wullur, S. (2017). DNA barcode dan analisis filogenetik molekuler beberapa jenis bivalvia asal perairan Sulawesi berdasarkan gen COI. Jurnal Pesisir dan Laut Tropis. 1(2), 32-38.

Troesch, B., Jing, H., Laillou, A. & Fowler, A. (2013). Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food and Nutrition Bulletin, 34(2), 90-101. https://doi.org/10.1177/15648265130342S111

Wang, Y., Zhang, H., Zhong, H. & Zhidong, X. (2021). Protein domain identification methods and online resources. Computational and Structural Biotechnology Journal, 19, 1145–1156. https://doi.org/10.1016/j.csbj.2021.01.041

Widodo, T. S., Sulistiyano, B. & Utama, C. S. (2015). Jumlah bakteri asam laktat (BAL) dalam digesta usus halus dan sekum ayam broiler yang diberi pakan ceceran pabrik pakan yang difermentasi. Agripet, 15(2), 98 – 103.

http://dx.doi.org/10.17969/agripet.v15i2.2376

Yanuartono, Nururrozi, A., Indarjulianto, S., Purnamaningsih, H. & Raharjo, S. (2019). Metode tradisional pengolahan bahan pakan untuk menurunkan kandungan faktor antinutrisi: review singkat. Jurnal Ilmu Ternak, 19(2), 97-107. DOI: 10.24198/jit.v19i2.23974.

Yu, L., Zhang, Y., Gutman, I., Shi, Y. & Dehmer, M. (2017). Protein sequence comparison based on physicochemical characteristics and the position-feature energy matrix. Scientific Reports. 7(46787), 1-8. https://doi.org/10.1038/srep46787

Yuan, S., Chan, S. & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), 1-10. https://doi.org/10.1002/wcms.1298

Zahara, N., Soekarno, B. P. W. & Munif, A. (2018). Metabolit bakteri endofit asal tanaman kacang tanah sebagai penghambat pertumbuhan Aspergillus flavus. Jurnal Fitopatologi Indonesia, 14(1), 15-22. https://doi.org/10.14692/jfi.14.1.15

Downloads

Submitted

27-11-2023

Accepted

21-03-2024

Published

23-04-2024

How to Cite

Firmansyah, R. P., Alimah, S. N., Artika, I. M., & Kurniatin, P. A. (2024). In silico phylogenetic, physicochemical, and structural characteristics of phytase enzyme from ten Aspergillus species. Menara Perkebunan, 92(1). https://doi.org/10.22302/iribb.jur.mp.v92i1.559