Characterization and morphological development of oil palm transformed-callus on modified culture media
DOI:
https://doi.org/10.22302/iribb.jur.mp.v92i2.576Keywords:
oil palm, plant development, transformed-callusAbstract
Genome editing through cisgenesis develops into scientific breakthroughs in accelerating oil palm breeding programs. However, one remaining problem is the low success of transformed-calli regeneration, while its scientific explanation is still underexplored. This study aimed to characterize and regenerate transformed-calli using various amino acids and antioxidants. Transformed callus that did not regenerate (un-regenerated transformed callus or UTC) after the transformation process was taken, then T-DNA integration was detected using the NPTII gene. Furthermore, the UTC was divided into four types based on morphological characteristics. The four types of UTCs were regenerated on media enriched with glutamine (for Type-1 callus), cysteine and putrescine (for Type-2 callus), and a combination of cysteine and ascorbic acid (for Type-3 and Type-4 callus). The research results obtained NPTII successfully amplified with a band size of 700bp. The results showed that on Type-1 callus, enrichment media with 10 mg L-1 L-glutamine could induce the formation of new nodular structures on UTC Type-1. On Type-2, media enriched with 5 mg L-1 L-cysteine + 20 mg L-1 putrescine increased the density of callus structures. Media enriched with 25 mg L-1 ascorbic acid + 25 mg L-1 L-cysteine could prevent the spread of brown callus on Type-3 callus, while Type-4 callus did not show any response and became dry. Our new findings will facilitate the basic research and unregenerated transformed callus and morphological callus development behavior in oil palm.
Downloads
References
Alemanno, L., Ramos, T., Gargadenec, A., Andary, C., & Ferriere, N. (2003). Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. An Bot. 92 (4), 613-623. doi: 10.1093/aob/mcg177
Bahariah, B., Masani, M. Y. A., Fizree, M. P. M. A. A., Rasid, O. A., & Parveez, G. K. A. (2023). Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes. Journal of Genetic Engineering and Biotechnology, 21(1). https://doi.org/10.1186/s43141-022-00459-5
Budiani, A., Nugroho, I. B., Sari, D. A., Palupi, I., & Putranto, R. A. (2019). CRISPR / Cas9 ‐ mediated knockout of an oil palm defense ‐ related gene to the pathogenic fungus Ganoderma boninense. 24(2), 0–4. https://doi.org/10.22146/ijbiotech.52170
Bhat, S.N., Khalil. A., Nazir, N., Mir, M.A., Khan, I., Mubashir, S.S., Dar, M.S., Wani, S.H., & Hossain, M.A. (2022). In vitro prevention of browning in Persian Walnut (Juglans regia L.) cv. Sulaiman. International Journal of Plant Biology 13(3),330-342. https://doi.org/10.3390/ ijpb13030027
de Fossard, R.A., Myint, A., & Lee, E.C.M. 1974. A broad spectrum tissue culture experiment with tobacco (Nicotiana tabacum L.) pith tissue callus. Physiol Plant 30, 125-130. https://doi.org/10.1111/j.13993054.1974.tb03116.x
Chen, D., Shao, Q., Yin, L., & Younis, A. (2019). Polyamine Function in Plants : Metabolism , Regulation on Development , and Roles in Abiotic Stress Responses. 9(January), 1–13. https://doi.org/10.3389/fpls.2018.01945
Dellero, Y. (2020). Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. 11.https://doi.org/10.3389/fpls.2020.602548
Doyle, J.J., & Doyle, J.J. (1990). Isolation of Plant DNA From Fresh Tissue. FOCUS, 12(1).
Edwards, B., Hornstein, E. D., Wilson, N. J., & Sederoff, H. (2022). High ‑ throughput detection of T ‑ DNA insertion sites for multiple transgenes in complex genomes. BMC Genomics, 1–20. https://doi.org/10.1186/s12864 -022-08918-6
El-Dawayati, M., H.S, Ghazzawy., M, Munir. 2018. Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid media conditions. Int. J. Biosci. 12(1): 10.12692/ijb/12.1.149-159
Gelvin, S. B. (2021). Plant DNA Repair and Agrobacterium T − DNA Integration. International Journal of Molecular Sciences Review 22 (8458). https://doi.org/10.3390/ijms 22168458
Gomes, T. H., Monah, P., Bartos, C., Aparecida, T., & Scherwinski-pereira, J. E. (2016). Regeneration of somatic embryos of oil palm (Elaeis guineensis) using temporary immersion bioreactors. Industrial Crops & Products, 89, 244–249. https://doi.org/10.1016/j.indcrop. 2016. 05.021
Ikeuchi, M., Favero, D. S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., & Sugimoto, K. (2019). Molecular Mechanisms of Plant Regeneration. Annu. Rev. Plant Biol, 70. https://doi.org/10.1146/annurev-arplant050718
Karyanti., T, Tajudin., H, Khairiyah., D, Purwoko., T, Sukarnih., G, Rahmadara., N.F, Hanifah., Y, Rudiyana., S, Kitagawa., F.R, Mira., & H.Saga. (2021). Proliferation of oil palm (Elaeis guineensis Jacq) Embrogenic Callus with Repeated Subculture in Liquid Medium. Jurnal Bioteknologi & Biosains Indonesia. 1 (8): 1- 13. Doi: 10.29122/jbbi.v8i1.4715
Khosroushahi, AY., Naderi-Manesh H & Simonsen HT. (2011). Effect of antioxidants and carbohydrates in callus cultures of Taxus brevifolia: Evaluation of browning, callus growth, total phenolics and paclitaxel production. BioImpacts 1(1): 37-45. doi: 10.5681/bi.2011.006
Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. In Environmental Science and Pollution Research. Springer Verlag. https://doi.org/ 10.1007/ s11356-019-04563-x
Mariani, T.S., Purnaning, A.S, & Latif, S. (2018) Effect of Glutamine Addition in Maturation Stage on the Germination and Plantlet Conversion of Oil Palm (Elaeis guineensis Jacq.) Somatic Embryo. American Journal of Applied Sciences 9(1)
Minarsih, H., Permatasari, G. W., Setiawati, Y., Mardhika, L. D., & Saptari, R. T. (2023). Transformation of CRISPR / Cas9 expression construct to enhance saturated fatty acid synthesis in oil palm for biofuel production. 1–7. IOP Conf. Series: Earth and Environmental Science 1255 (012058) doi:10.1088/1755-1315/1255/1/012058
Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. In CABI Agriculture and Bioscience (Vol. 2, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s43170-021-00058-3
Ndakidemi, C., Mneney, E. & Ndakidemi, P. (2014). Effects of ascorbic acid in controlling lethal browning in in vitro culture of Brahylaena huillensis using nodal segments. American Journal of Plant Sciences, 5(1), 187-191. doi: 10.4236/ajps.2014.51024.
Pawar, B., Kale, P., Bahurupe, J., Jadhav, A. Kale, A., & Pawar, S.. (2015). Proline and Glutamine Improve in vitro Callus Induction and Subsequent Shooting in Rice. Rice Science 22(6): 283-289. https://doi.org/10.1016/j.rsci. 2015. 11. 001
Permadi, N., Nurzaman, M., Alhasnawi, A.N., F, Doni, F., & Julaeha, E. (2023). Managing Lethal Browning & Microbial Contamination in Musa spp. Tissue Culture: Synthesis and Perspectives. Horticulturae, 9(4). https://doi.org/10.3390/ horticulturae 9040453
Richau, K.H., Kaschani, F., Verdoes, M., Pansuriya, T.C., niessen, S., Stuber, K., Colby, T., Overkleeft, H.S., Bogyo, M., & Van der Hoorn, R.A. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 158, 1583–1599. https://doi.org/ 10.1104/pp.112.194001
Romero, L.C., Garcia, I., & Gotor, C. (2013). L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal. Behav. 8, e24007. doi: 10.4161/psb.24007
Rajesh, M. K., Radha, E., Karun, A., & Parthasarathy, V. A. (2003). Plant regeneration from embryo-derived callus of oil palm-the effect of exogenous polyamines. In Plant Cell, Tissue and Organ Culture (Vol. 75).
Sakhanokho, H. F., Ozias-Akins, P., May, O. L., & Chee, P. W. (2005). Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell, Tissue and Organ Culture, 81(1), 91–95. https://doi.org/10.1007/s11240-004-1541-3
Sinta, M. M. Saptari, R.T, Riyadi., I & Sumaryono (2024). Browning prevention of oil palm somatic embryos in the temporary immersion system with antioxidant mixture and modification of basal media. IOP Conf. Ser.: Earth Environ. Sci. 1308 012002. Doi: 10.1088/1755-1315/1308/1/012002
Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, G. A. (2011). The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant, 33, 2279.
Velmurugan, R and S.R, Sivakumar. 2020. Effect of L: Glutamine on in vitro callus induction and embryogenic potential of Stevia rebaudiana Bert. International Journal of Botany Studies 5(6): 355 – 357. doi: 10.24247/ijbtrapr20181
Wu, T. Li, J. Zhang, J., Lin, M., Wu, Z., Cai, X., Xiang, W., Tan, S., Zhang, Z. (2018). Graphene oxide inhibits the lethal browning of Cymbidium sinense by reducing activities of enzymes. J. Plant Biotechnol. Microbiol. 1: 11–20.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yuli Setiawati, Imron Riyadi, Dini Astika Sari, Rizka Tamania Saptari, Masna Maya Sinta, Hayati Minarsih, Turhadi, Riza Arief Putranto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.