Characterization of sn-1,3 extracellular lipases of Aspergillus niger and Rhizopus oryzae for the crude palm oil hydrolysis

Authors

  • Ludwinardo Putra Indonesian Oil Palm Research Institute
  • Eneng Nurhasanah IPB University
  • Eti Rohaeti IPB University
  • Irma Kresnawaty Indonesian Oil Palm Research Institute

Keywords:

enzymatic hydrolysis, filamentous fungi, sn-2 palmitate, vegetable oil

Abstract

Crude palm oil (CPO) processing for sn-2 palmitate synthesis requires a specific sn-1,3 lipase to catalyze the hydrolysis step. These lipases are known to be derived from filamentous fungal isolates including Aspergillus niger and Rhizopus oryzae. The purpose of this study was to describe extracellular lipases from A. niger and R. oryzae that hydrolyze CPO. Extracellular lipases were successfully recovered from both fungal isolates using CPO-enriched fermentation media. The crude fraction was partially refined using (NH4)2SO4 and dialyzed, yielding two fractions. Lipase fraction I from both fungal species had the highest specific activity, had a molecular mass of ~30 kDa, and was sn-1,3 specific. The best conditions for enzyme activity of both fungal species in CPO hydrolysis were pH 6-7 and 35 ℃. The pH and heat stability of lipase fraction I in both fungi were relatively low. However, this enzyme worked effectively in benzene, ethanol, and methanol solvents.

Downloads

Download data is not yet available.

References

Alabdalall, H. A., Al-Anazi, N. A., Aldakheel, L. A., Amer, I. H. F., Aldakheel, A. F., Ababutain, M. I., Alghamdi, I. A., & Al-Khaldi, M. E. 2021. Application and characterization of crude fungal lipases used to degrade fat and oil wastes. Scientific Reports, 11(19670), 1-10. https://doi.org/10.1038/s41598-021-98927-4

Albayati, H. S., Masomia, M., Ishak, H. S., Ali, M. S. M., Thean, L. A., Shariff, Noor, M. D. N., & Rahman, A. R. J. N. 2020. Main structural targets for engineering lipase substrate specificity. Catalysts, 10(747), 1-34. https://doi.org/10.3390/catal10070747

Al-dahlan, Baghdadi, M. A., & Alkattan, O. M. 2024. Microbial lipases: Between production, purification, and their biotechnological applications. Current Science International. 13(1), 75-86. https://doi.org/10.36632/csi/2024.13.1.6

Ali, S., Khan, A. S., Hamayun, M., & Lee, I. 2023. The recent advances in the utility of microbial lipases, 11(540), 1-26. https://doi.org/10.3390/microorganisms11020510

Ayinla, A. Z., Ademakinwa, N. A., & Agboola, K. F. 2017. Studies on the optimization of lipase production by Rhizopus sp. ZAC3 isolated from the contaminated soil of a palm oil processing shed. Journal of Applied Biology amd Biotechnology, 5(2), 30-37. https://doi.org/10.7324/JABB.2017.50205

Barathi, D., Rajalakshmi, G., & Komathi, S. 2019. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University, 31, 898-901. https://doi.org/10.1016/j.jksus.2017.12.018

Bomfima, S. R., Velasco, J., Cardoso, A. L., Ribeiro, F. D. C., Marinho, M. Q. L., Ribeiro, R, P., & Almeida, T. D. (2024). Processing practices and quality of crude palm oil produced on a small scale in Valença, Bahia, Brazil. Grasas Y Aceites, 75(2), 1-12, https://doi.org/10.3989/gya.1191231.2084

Dasetty, S., Blenner, A., M., & Sarupria, S. 2017. Engineering lipases: walking the fine line between activity and stability. Materials Research Express, 1-32. https://doi.org/10.1088/2053-1591/aa9946

Du, M., Hou, Z., Liu, L., Xuan, Y., Chen, X., Fan, L., Li, Z., & Xu, B. 2022. Progress, applications, challenges and prospects of protein purification technology. Friontiers in Bioengineering and Biotechnology, 10, 1-26. https://doi.org/10.3389/fbioe.2022.1028691

Emmanuel, B. M., Evans, C. D., Abubakar, A., Labaran, M. L., Ali, V. A., & Zabe, M. 2020. Production, partial purification and characterization of lipase enzyme expressed by Klebsiella pnemoniae of vegetable oil contaminated soil. International Journal of Biochemistry and Biophysics, 8(2), 30-39. https://doi.org/10.13189/ijbb.2020.080202

Fathi, F., Kasra-Kermanshahi, Moosavi-Nejad, Z., & Qamsari, M. E. 2021. Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum. Iranian Journal of Microbiology, 13(6), 871-877. https://doi.org/10.18502/ijm.v13i6.8093

Girelli, G. M., & Chiappini, V. 2023. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. Journal of Biotechnology, 365, 29-47. https://doi.org/10.1016/j.jbiotec.2023.02.003

Goldring, D. P. J. 2018. Measuring protein concentration with absorbance, Lowry, Bradford Coomassie Blue, or the smith bicinchoninic acid assay before electrophoresis. Electrophoretic Separation of Protein: Method and Protocols, 1855, 31-39. https://doi.org/10.1007/978-1-4939-8793-1_3

Hasibuan, A. H. 2022. The synthesis of sn-2 palmitate as human milk fat substitute from palm oil fractions by enzymatic interesterification – a review. Journal of Oil Palm Research, 34(4), 608-621. https://doi.org/10.21894/jopr.2022.0045

Helal, E. S., Abdelhady, M. H., Abou-Taleb, A. K., Hassan, G. M., & Amer, M. M. 2021. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering and Biotechnology, 19(1), 1-13. https://doi.org/10.1186/s43141-020-00094-y

Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. 2018. Bacterial lipases: a review on purification and characterization. Progress in Biophysic and Molecular Biology, 132, 23-34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

Köse, K., Erol, K., Köse, A. D., Evci, E., & Uzun, L. 2016. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 574-583. https://doi.org/10.3109/21691401.2016.1161642

Kumar, A., Mukhia, S., Kumar, N., Acharya, V., Kumar, S., & Kumar, R. 2021. A broad temperature active lipase purified from a psychrotrophic bacterium of sikkim himalaya with potential application in detergent formulation. Frontier in Bioengineering and Biotechnology, 8(642), 1-16. https://doi.org/10.3389/fbioe.2020.00642

Liu, Z., & Smith, R. S. 2021. Enzyme recovery from biological wastewater treatment. Waste and Biomass Valorization, 12, 4185-4211. https://doi.org/10.1007/s12649-020-01251-7

Man, C. B. Y., Haryati, T., Ghazali, M. H., & Asbi, A. B. 1999. Composition and thermal profile of crude palm oil and its products. JAOCS, 76(2), 237-242. https://doi.org/10.1007/s11746-999-0224-y

Nargotra, P., Sharma, V., Sharma, S., Bangotra, R., & Bajaj, K. B. 2022. Purification of an ionic liquid stable cellulase from Aspergillus aculeatus PN14 with potential for biomass refining. Environmental Sustainability 5, 313-323. https://doi.org/10.1007/s42398-022-00232-x

Nuraliyah, A., Perdani, Putri, N. D., Sahlan, M., & Hermansyah, H. 2021. Effect of additional amino group to improve the performance of immobilized lipase from Aspergillus niger by adsorption-crosslinking method. Frontiers in Energy Research, 9, 1-11. https://doi.org/10.3389/fenrg.2021.616945

Pérez, M. M., Gonçalves, S. C., Vici, C. A., Salgado, S. C., & Polizeli, M. T. L. M. 2019. Fungal lipases: versatile tools for white biotechnology. Springer Nature Switzerland, 361-404. https://doi.org/10.1007/978-3-030-10480-1_11

Putra, L., Natadiputri, H. G., Meryandini, A., & Suwanto, A. 2019. Isolation, cloning and co-expression of lipase and foldase genes of Burkholderia territorii GP3 from Mount Papandayan Soil. Journal Microbialogy biotechnology, 29(6), 944-951. https://doi.org/10.4014/jmb.1812.12013

Remonatto, D., Ferrari, R. B., Bassan, C. J., Santos-Ebinuma, C. V., & Paula, V. A. 2021. Utilization of clay materials as support for Aspergillus japonicus lipase: an eco-friendly approach. Catalysts, 11(10), 1-17. https://doi.org/10.3390/catal11101173

Salvatierra NH, Regner LE, Baifori DM, Pera ML. 2021. Orchestration an extracellular lipase production from Aspergillus niger MYA 135: biomass morphology and fungal physiology. AMB Express, 11(42), 1-11. doi:10.1186/s13568-021-01202-y

Tako, M., Katogan, A., Papp, T., Kadaikunnan., Alharbi, N., & Vágvölgyi, C. 2017. Purification and properties of extracellular lipases with transesterification activity and 1,3-regioselectivity from Rhizomucor miehei and Rhizopus oryzae. Journal Microbiology and Biotechnology, 27(2), 277-288. https://doi.org/10.4014/jmb.1608.08005

Thomas, L. S., Thacker, B. J., Schung, A. K., & Maráková, K. 2020. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. Journal of Separation Science, 44(1), 211-246. https://doi.org/10.1002/jssc.202000936

Tian M, Yang L, Wang Z, Lv P, Fu J, Changlin M, Li Z, Li L, Liu T, Du W, Luo W. 2022. Improvement of methanol tolerances and catalytic activity of Rhizomucor miehei lipase for one-step synthesis of biodiesel by semi-rational design. Bioresource Technology, 348, 1-31. https://doi.org/10.1016/j.biortech.2022.126769

Tri-Panji, Kresnawaty, I., Dimawarnita, F., Saadah, S., Aminingsih, T., & Miranti, M. 2019. Gliserolisis enzimatik CPO dengan lipase amobil untuk produksi diasil dan monoasil gliserol. Menara Perkebunan, 87(1), 11-19. https://doi.org/10.22302/iribb.jur.mp.v1i87.321

Vidal, L., Dong, Z., Olofsson, K., Karlsson, N. E., & Nicaud, J. 2023. Production of Rhizopus oryzae lipase using optimized Yarrowia lipolytica expression system. FEM Yeast Research, 23, 1-14. https://doi.org/10.1093/femsyr/foad037

Wei, W., Sun, C., Wang, X., Jin, Q., Xu, X., Akoh, C.C., & Wang, X. 2020. Lipase-catalyzed synthesis of sn-2 palmitate. Engineering, 6(406), 1-14. https://doi.org/10.1016/j.eng.2020.02.008

Xing, S., Zhu, R., Cheng, K., Cai, Y., Yuedan, Z. X., Zhu, Q., & He, L. 2021. Gene expression, biochemical characterization of sn-1,3 extracellular lipase from Aspergillus niger GZUF36 and its mode-structure analysis. Frontiers in Microbiology. 12, 1-16. https://doi.org/10.3389/fmicb.2021.633489

Xing, S., Zhu, R., Li, C., He, L., Zheng, X., & Zhang, Q. 2020. Gene cloning, expression, purification and characterization of a sn-1,3 extracellular lipase from Aspergillus niger GZUF36. Journal Food Science Technology, 57, 2669-2680. https://doi.org/10.1007/s13197-020-04303-x

Yang, X., Zhang, Y., Pang, H., Yuan, S., Wang, X., Hu, Z., Zhou, Q., He, Y., Yan, Y., & Xu, L. 2021. Codisplay of Rhizopus oryzae and Candida rugosa lipases for biodiesel production. Catalysts, 11(4), 1-13. https://doi.org/10.3390/catal11040421.

Yao, W., Liu, K., Liu, H., Wang, R., Wang, W., & Wang, T. 2021. A valuable product of microbioal cell factories: microbial lipase. Frontiers in Microbiology, 12, 1-16. https://doi.org/10.3389/fmicb.2021.743377

Yuan, T., Wei, W., Wang, X., & Jin, Q. 2020. Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols of human milk fat substitute. Food Science and Technology, 128, 1-7. https://doi.org/10.1016/j.lwt.2020.109255

Zheng, J., Liang, Y., Li, J., Lin, S., Zhang, Q., Zuo, K., Zhong, & Xu, X. 2023. Enzymatic preparation of mono- and diacylglycerols: A review. Grain and Oil Science and Technology, 6, 185-205. https://doi.org/10.1016/j.gaost.2023.10.002

Zhu, S., Xu, Y., & Yu, X. W. 2020. Improved Homologous Expression of the Acidic Lipase from Aspergillus niger. Journal Microbiology Biotechnology, 30(2), 196-205. https://doi.org/10.4014/jmb.1906.06028

Downloads

Submitted

02-09-2025

Accepted

13-11-2025

Published

26-11-2025

How to Cite

Putra, L., Nurhasanah, E., Rohaeti, E., & Kresnawaty, I. (2025). Characterization of sn-1,3 extracellular lipases of Aspergillus niger and Rhizopus oryzae for the crude palm oil hydrolysis. Menara Perkebunan, 93(2). Retrieved from http://mp.iribb.org/mpjurnal/article/view/673