Aplikasi metabolit sekunder dari tiga isolat Pseudomonas fluorescens untuk mengendalikan penyakit antraknosa pada daun kakao
DOI:
https://doi.org/10.22302/iribb.jur.mp.v90i1.483Keywords:
antraknosa daun, kakao, metabolit Sekunder, Pseudomonas fluorescensAbstract
Anthracnose caused by Colletotrichum gloeosporoides is an important disease in cocoa. This research aimed to determine the effectiveness of secondary metabolites derived from three isolates of Pseudomonas fluorescens to control cocoa leaves anthracnose, and their influence on the growth of cocoa plants. The research was conducted at a smallholder cocoa plantation in Putat Village, Patuk District, Gunung Kidul Regency, Yogyakarta for four months. A randomized block design was used with four replicates and seven treatments consisted of control, application of secondary metabolites from P. fluorescens P60, P. fluorescens P20, P. fluorescens P8, combination P. fluorescens P60 + P20, P. fluorescens P60 + P8, and P. fluorescens P20 + P8. Variables observed were disease intensity, infection rate, number of healthy shoots and qualitative phenolic compound. Resultsof the research showed that the secondary metabolites of P. fluorescens P60, P20 and P8 alone or in combination suppressed the disease intensity by42.01-54.50%. The infection rate caused by metabolite secondary of P. fluorescens P60, P20, P8, P. fluorescens P60+P20, P. fluorescens P60+P8,and P. fluorescens P20+P8 was 0.23; 0.25; 0.26; 0.26; 0.31; and 0.24 units/day, respectively. The secondary metabolites of P. fluorescens P60 increased the number of healthy shoots by 67.44 %. The secondary metabolites of P. fluorescens P60 increased phenolic compounds (tannin, saponin, and glycosides) in cocoa leaves.
[Keyword: leaves anthracnose, Colletotrichum gloeosporoides, cocoa, secondary metabolites, Pseudomonas fluorescens]
Abstrak
Antraknosa yang disebabkan oleh Colletotrichum gloeosporioides merupakan penyakit penting pada tanaman kakao. Penelitian bertujuan mengkaji keefektifan metabolit sekunder dari tiga isolat Pseudomonas fluorescens untuk mengendalikan penyakit antraknosa pada daun kakao, serta pengaruhnya terhadap pertumbuhan tanaman kakao. Penelitian dilaksanakan di perkebunan kakao rakyat, Desa Putat, Kecamatan Patuk, Kabupaten Gunung Kidul, Yogyakarta selama empat bulan. Penelitian menggunakan rancangan acak kelompok untuk menguji 7 perlakuan yang diulang 4 kali, perlakuan yang diuji adalah kontrol, aplikasi metabolit sekunder P. fluorescens P60, P. fluorescens P20, P. fluorescens P8, kombinasi P. fluorescens P60+P20, P. fluorescens P60+P8, dan P. fluorescens P20+P8. Variabel pengamatan meliputi intensitas penyakit, laju infeksi, jumlah tunas sehat, dan kandungan senyawa fenol secara kualitatif. Hasil penelitian menunjukkan bahwa perlakuan metabolit sekunder P. fluorescens P60, P20, dan P8 secara tunggal dan gabungan mampu menekan intensitas penyakit berkisar 42,01-54,50%. Laju infeksi perlakuan metabolit sekunder P. fluorescens P60, P. fluorescens P20, P. fluorescens P8, kombinasi P. fluorescens P60+P20, P. fluorescens P60+P8 dan P. fluorescens P20+P8 berturut-turut 0,23; 0,25; 0,26; 0,26; 0,31; dan 0,24 unit/hari. Metabolit sekunder P. fluorescens P60 meningkatkan jumlah tunas sehat sebesar 67,44%. Perlakuan P. fluorescens P60 meningkatkan senyawa fenol (saponin, tanin, dan glikosida) pada daun kakao.
[Kata kunci: antraknosa daun, Colletotrichum gloeosporoides, kakao, metabolit sekunder, Pseudomonas fluorescens]
Downloads
References
Aksare, E.K., O. Domfeh, S.W. Avicor, P. Pobee, Y. Bukari, & I. Amoako-Attah. 2021. Colletotrichum gloeosporioides s.l. causes an outbreak of anthracnose of cacao in Ghana. South African Journal of Plant and Soil 38(2): 107-115. DOI: 10.1080/02571862.2020.186348.
Azubuike, C.C., C.B. Chikere, & G.C. Okpokwasili. 2016. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 180. DOI: 10.1007/s11274-016-2137-x.
Badan Penelitian dan Pengembangan Pertanian. 2019. Prospek dan arah pengembangan agribisnis: Kakao. https://www.litbang.pertanian.go.id/special/komoditas/b4kakao#:~:text=Kakao%20Kakao%20merupakan%20salah%20satu%20komoditas%20perkebunan%20yang,berperan%20dalam%20mendorong%20pengembangan%20wilayah%20dan%20pengembangan%20agroindustri. Diakses 25 Januari 2022.
Badan Pusat Statistik. 2022. Produksi Tanaman Perkebunan (Ribu Ton), 2018-2020. (On-line). https://www.bps.go.id/indicator/54/132/1/produksi-tanaman-perkebunan.html diakses 25 Januari 2022.
Bhakare, S., P.M. Tumane, & D.D. Wasnik. 2020. Isolation and screening of bacterial exopolysaccharide from leguminous soil as a potential of indole acetic acid. Bulletin of Environment, Pharmacology and Life Sciences 9(4): 96-101.
Bowen, K.L. 2007. Plant disease epidemiology. In: Trigiano RN et al. (eds.) Plant Pathology, Concepts and Laboratory Exercises. 2nd Ed. CRC Press, New York. pp. 281-294.
Brazelton, J.N., E.E. Pfeufer, T.A. Sweat, B.B.M. Gardener, & C. Coenen. 2008. 2,4-diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21: 1349–1358. DOI: 10.1094 / MPMI -21-10-1349.
Chairul. 2003. Identifikasi secara cepat bahan bioaktif pada tumbuhan di lapangan. Berita Biologi 6(4): 621-628.
Effendy, M.F. Pratama, R.A. Rauf, M. Antara, M. Basir-Cyio, Mahfudz, dan Muhardi. 2019. Factors influencing the efficiency of cocoa farms: A study to increase income in rural Indonesia. PLoS ONE 14(4): e0214569. DOI: 10.1371/journal.pone.0214569.
Fadilah, H.H.T., L. Lubis, & Hasanuddin. 2013. Efek temperatur terhadap virulensi jamur Colletotrichum gloeosporioides Penz. Sacc. penyebab penyakit antraknosa pada tanaman kakao (Theobroma cocoa L.). Jurnal Online Agroekoteknologi 2(1): 441-420.
Freeman, B.C. & G.A. Beattie. 2008. An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. DOI: 10.1094/PHI-I-2008-0226-01.
Haggag, W.M. & M.A. El Soud. 2012. Production and optimization of Pseudomonas fluorescens biomass and metabolites for biocontrol of strawberry grey mould. American Journal of Plant Sciences 3: 836-845. DOI: 10.4236/ajps.2012.37101.
Han, J.S., J.H. Cheng, T.M. Yoon, J. Song, A. Rajkarnikar, W.G. Kim, I.D. Yoo, Y.Y. Yang, & J.W. Suh. 2012. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology 99: 213–221.
Hassani, M.A., P. Durán, & S. Hacquard. 2018. Microbial interactions within the plant holobiont. Microbiome 6(58). DOI: 10.1186/s40168-018-0445-0.
He, D.-C., M.-H. He, D.M. Amalin, W. Liu, D.G. Alvindia, & J. Zhan. 2021. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens 10(10): 1311. DOI: 10.3390/pathogens10101311.
Hojnik, M., M. Modic, Y. Ni, G. Filipič, U. Cvelbar, & J.L. Walsh. 2019. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 53(4): 1893–1904. DOI: 10.1021/acs.est.8b05386.
Jacoby, R.P., A. Koprivova, & S. Kopriva. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J Exp Bot. 72(1): 57–69. DOI: 10.1093/jxb/eraa424.
Kliebenstein, D.J. & A. Osbourn. 2012. Making new molecules - evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol. 15(4): 415-423. DOI: 10.1016/j.pbi.2012.05.005.
Köhl, J., R. Kolnaar, & W.J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 10: 845. DOI: 10.3389/fpls.2019.00845.
Kurniasih, H., N. Prihatiningsih, E. Mugiastuti, dan L. Soesanto. 2020. Aplikasi Pseudomonas fluorescens P20 formula cair tepung ikan terhadap rebah semai mentimun. Jurnal Agro 7(2): 158-168. DOI: 10.15575/8591.
Labhasetwar, A.A., S.B. Bramhankar, T.S. Pillai, S.S. Isokar, G.T. Dinkwar, S.S. Bhure, & V.M. Kharat. 2019. Biochemical and physiological characterizations of Pseudomonas fluorescens. International Journal of Chemical Studies 7(1): 1785-1788.
Li, S., P. Wang, W. Yuan, Z. Su, & S.H. Bullard. 2016. Endocidal regulation of secondary metabolites in the producing organisms. Sci Rep. 6: 29315. DOI: 10.1038/srep29315.
Olanrewaju, O.S., B.R. Glick, & O.O. Babalola. 2017. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. 33(11): 197. DOI: 10.1007/s11274-017-2364-9.
Prasannath, K. 2017. Plant defense-related enzymes against pathogens: a review. AGRIEAST Journal of Agricultural Sciences 11(1): 38. DOI: 10.4038/agrieast.v11i1.33
Raaijmakers, J.M. & M. Mazzola. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol. 50: 403-424. DOI: 10.1146/annurev-phyto-081211-172908.
Rajmohan, K.S., R. Chandrasekaran, & S. Varjani. 2020. A Review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol. 60(2): 125–138. DOI: 10.1007/s12088-019-00841-x.
Ramírez-Gómez, X.S., S.N. Jiménez-García, V.B. Campos, & L.G. Campos. 2019. Plant Metabolites in Plant Defense Against Pathogens. IntechOpen Book Series. DOI: 10.5772/intechopen.87958.
Rieusset, L., M. Rey, D. Muller, J. Vacheron, F. Gerin, A. Dubost, G. Comte, & C. Prigent-Combaret. 2020. Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microbial Biotechnology 13(5): 1562–1580. DOI: 10.1111/1751-7915.13598.
Rojas, E.I., S.A. Rehner, G.J. Samuels, S.A. Van Bael, E.A. Herre, P. Cannon, R. Chen, J. Pang, R. Wang, Y. Zhang, Y.-Q. Peng, & T. Sha. 2010. Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102(6): 1318-1338. DOI: 10.3852/09-244.
Soesanto, L., R. Hidayat, & D.S. Utami. 2003. Prospek pemanfaatan Pseudomonas fluorescens P60 untuk pengendalian penyakit busuk batang pada kacang tanah. J. Fitopatologi Indonesia 7(1): 1-6.
Soesanto, L., E. Mugiastuti, dan R.F Rahayuniati. 2010. Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f. sp. lycopersici pada tanaman tomat in vivo. Jurnal HPT Tropika 10(2): 108-115.
Soesanto, L., E. Mugiastuti, & R.F. Rahayuniati. 2011. Pemanfaatan beberapa kaldu hewan sebagai bahan formula cair Pseudomonas fluorescens P60 untuk mengendalikan Sclerotium rolfsii pada tanaman mentimun. Jurnal Perlindungan Tanaman Indonesia 17(1): 7-17.
Soesanto, L., C.N. Pradiptha, and E. Mugiastuti. 2021. Raw Secondary metabolites of chitosan-enriched Pseudomonas fluorescens P60 to control corn sheath blight. Biosaintifika: Journal of Biology & Biology Education 13(1): 113-120. DOI: 10.15294/biosaintifika.v13i1.28775.
Suryanto, D., S. Wahyuni, E.B.M. Siregar, & E. Munir. 2014. Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. African Journal of Biotechnology 13(15): 1631-1637. DOI:
Thambugala, K.M., D.A. Daranagama, A.J.L. Phillips, S.D. Kannangara, & I. Promputtha. 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol. 10: 604923. DOI: 10.3389/fcimb.2020.604923.
Thrane, C., S. Olsson, T.H. Nielsen, & J.J. Sørensen. 2006. Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiology Ecology 30(1): 11-23. DOI: 10.1111/j.1574-6941.1999.tb00631.x.
Vacheron, J., G. Desbrosses, M.-L. Bouffaud, B. Touraine, Y. Moenne-Loccoz, D. Muller, & C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4: 356. DOI: 10.3389/fpls.2013.00356.
Van der Plank, J.E.. 1963. Plant disease epidemic and control. Akademik Press, New York and London.
Velásquez, A.C., C.D.M. Castroverde, & S.Y. He. 2018. Plant and pathogen warfare under changing climate conditions. Curr Biol. 28(10): R619–R634. DOI: 10.1016/j.cub.2018.03.054.
Wickramasuriya, A.M. & J.M. Dunwell. 2018. Cacao biotechnology: current status and future prospects. Plant Biotechnol J. 16(1): 4–17. DOI: 10.1111/pbi.12848.
Yang, H. & P. Luo. 2021. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. Int J Mol Sci. 22(16): 8865. DOI: 10.3390/ijms22168865.
Zaedar, A. Rosmana, T. Kuswinanti, & Nasaruddin. 2021. Isolation and identification of endophytic fungi on cocoa plant (Theobroma cacao L.) and antagonist activity against Colletotrichum gloeosporioides. Int. J. Curr. Microbiol. App. Sci. 10(9): 419-430. DOI: 10.20546/ijcmas.2021.1009.049.
Živković, S., S. Stojanović, Ž. Ivanović, V. Gavrilović, T, Popović, & J. Balaž. 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch. Biol. Sci., Belgrade, 62(3): 611-623. DOI: 10.2298/ABS1003611Z.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.