Propagation and shelf-life of weed pathogenic fungi in alternative media and their effectiveness in billygoat (Ageratum conyzoides L)
DOI:
https://doi.org/10.22302/iribb.jur.mp.v91i2.536Keywords:
biological control, broad leaves weed, fungal propagation, rice washing water, preservationAbstract
Control of billygoat (Ageratum conyzoides L) currently uses herbicides, on the other hand, control using pathogenic fungi is environmentally friendly, but for mass propagation and storage, alternative media are needed. The aim of the study was to determine the best type of alternative media for fungal growth and shelf life, as well as its effectiveness against billygoat. The treatment tested involves a combination of two factors: the type of pathogenic fungi (Curvularia lunata or Fusarium oxysporum) and the type of medium (rice washing water or tofu liquid waste). A completely randomized design was used for the in vitro test, while in planta test used a randomized block design with each experimental unit repeated five times. The observed variables were conidia density, number of colonies, incubation period, disease symptoms, disease intensity, and area under the disease progress curve (AUDPC), as well as weed height, number of leaves, fresh and dry shoot, and root weights. The results showed that the conidia density of F. oxysporum was 57% better in rice washing water than in tofu wastewater. The best shelf life for the fungus was four weeks. The use of rice washing water for F. oxysporum and C. lunata effectively delayed the incubation period by 77 and 71% respectively, suppressed disease intensity by 90 and 88%, and AUDPC by 94 and 93% compared to the control. The F. oxysporum grown on rice washing water media was able to reduce the number of leaves, fresh and dry weight of billygoat by 25, 30, and 20% compared to the control, respectively.
Downloads
References
Abba ,N., Sung, C.T.B, Paing, T.N., & Zuan, A.T.K. (2021). Wastewater from washed rice water as plant nutrient source: Current understanding and knowledge gaps. Pertanika Journal of Science & Technology 29(3), 1347-1369. https://doi.org/10.47836/pjst.29.3.11.
Afifah, L., Aena, A.C., Saputro,N.W, Kurniati, A., Maryana, R.,Lestari, A., Abadi, S. & Enri, U. (2022). Maize media enhance the conidia production of entomopathogenic fungi Lecanicillium lecanii also Its effective to control the weevil Cylas formicarius (Fabricius) (Coleoptera: Brentidae). AGRIVITA Journal of Agricultural Science 44(3), 513-525. https://doi.org/10.17503/agrivita.v44i3.3605.
Alibardi, L., TF Astrup, T.F., Asunis,F., Clarke, W.P., Gioannis, G.D., Dessì, P., Lens, P.N.L., Lavagnolo, M.C., Lombardi, L., Muntoni, A., Pivato, A., Polettini, A., Pomi, R., Rossi, A., Spagni, A. & Spiga, D. (2020). Organic waste biorefineries: Looking towards implementation. Waste Management 114, 274–286. https://doi.org/10.1016/j.wasman.2020.07.010.
Ali, S.S., Nugent, B., Mullins, E. & Doohan, F.M. (2013). Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose. PLoS ONE 8(1), e54701.
https://doi.org/10.1371/journal.pone.0054701.
Anasontzis, G.E. & Christakopoulos, P. (2014). Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5(6), 393-395. https://doi.org/10.4161/bioe.36328.
Asiandu, A., Widjajanti, H. & Rosalina, R. (2021). The potential of tofu liquid waste and rice washing wastewater as cheap growth media for Trichoderma sp. Journal of Environmental Treatment Techniques 9(4), 769-775. https://doi.org/10.47277/JETT/9(4)775.
Asim S., Hussain, A., Murad, W., Hamayun, M., Iqbal, A., Rehman, H., Tawab, A., Irshad, M., Alataway, A., Dewidar, A.Z., Elansary, H.O., & Lee, I.-J. (2022). Endophytic Fusarium oxysporum GW controlling weed and an effective biostimulant for wheat growth. Frontier in Plant Science 13. https://doi.org/10.3389/fpls.2022.922343.
Awasthi, S., Das, A. & Bhattacharjee, C. (2011). Physico-chemical properties of different kind of rice water and their effect on diarrhoea causing bacteria and dandruff-causing fungi. Journal of Phytology 3 (11), 33-36.
Bhat, H.A., Ahmad, K., Ahanger, R.A., Qazi, N.A., Dar, N.A. & Ganie, S.A. (2013). Status and symptomatology of Alternaria leaf blight (Alternaria alternata) of Gerbera (Gerbera jamisonii) in Kashmir valley. African Journal of Agricultural Research 8(9), 819-823. https://doi.org/10.5897/AJAR12.1766.
Cohen, Y., Rubin, A.E. & Galperin, M. (2018). Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLoS ONE 13(9), e0204523. https://doi.org/10.1371/journal.pone.0204523.
Deising, H., Frittrang, A.K., Kunz, S. & Mendgen, K. (1995). Regulation of pectin methylesterase and polygalacturonate lyase activity during differentiation of infection structures in Uromyces viciae-fabae. Microbiology 141(3), 561-571. https://doi.org/10.1099/13500872-141-3-561.
Doehlemann, G., Ökmen, B., Zhu, W. & Sharon, A. (2017). Plant pathogenic fungi. Microbiology Spectrum 5(1). https://doi.org/10.1128/microbiolspec.FUNK-0023-2016.
Ebadzadsahrai, G., Keppler, E.A.H., Soby, S.D. & Bean, H.D. (2020). Inhibition of fungal growth and induction of a novel volatilome in response to Chromobacterium vaccinii volatile organic compounds. Frontier in Microbiology 11, 1035. https://doi.org/10.3389/fmicb.2020.01035.
Gao, S., Li, Y., Gao, J., Suo, Y., Fu, K., Li, Y. & Chen, J. (2014). Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. MC Genomics 15(1), 627. https://doi.org/10.1186/1471-2164-15-627.
Gfeller, A., Glauser, G., Etter, C., Signarbieux, C.& Wirth, J. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Frontier in Plant Science 9, 50. https://doi.org/10.3389/fpls.2018.00050.
Gharde, Y., Singh, P.K., Dubey, R.P. & Gupta, P.K. (2018). Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection 107, 12-18. https://doi.org/10.1016/j.cropro.2018.01.007.
Gonzalez-Roncero, M.I., Pietro, A.D., Roldán, M.D.C.R, Huertas-González, M.D., Fé, G., Meglécz, F., Jiménez-Marín, A., Caracuel, Z., Sancho-Zapatero,R., Hera, C., Gomez, E., Ruiz-Rubio, M., González-Verdejo, C.I. & Páez, M.J. (2000). Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum. Revista Iberoamericana de Micología 17(1), S47-53.
Huang, W., Ratkowsky, D., Hui, C., Wang, P., Su, J.& Shi, P. (2019). Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 10(3), 256. https://doi.org/10.3390/f10030256.
Hyde, K.D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G.T.,Abeywickrama, P.D., Aluthmuhandiram, J.V.S., Brahamanage, R.S., Brooks, S., Chaiyasen, A., Chethana, K.W.T., Chomnunti, P., Chepkirui, C., Chuankid, B., de Silva, N.I., Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra, D., Hemachandran, H., Hongsanan, S., Karunarathna, A., Karunarathna, S.C., Khan, S., Kumla, J., Jayawardena, R.S., Liu, J.-K., Liu, N., Luangharn, T., Macabeo, A.P.G., Marasinghe, D.S., Meeks, D., Mortimer, P.E., Mueller, P., Nadir, S., Nataraja, K.N., Nontachaiyapoom, S., O’Brien, M., Penkhrue, W., Phukhamsakda, C., Ramanan, U.S., Rathnayaka, A.R., Sadaba, R.B., Sandargo,B., Samarakoon, B.C., Tennakoon, D.S., Siva, R., Sriprom, W., Suryanarayanan,T.S., Sujarit, K., Suwannarach, N., Suwunwong, T., Thongbai, B., Thongklang, N.,Wei, D., Wijesinghe, S.N., Winiski, J.,Yan, J., Yasanthika, E. & Stadler, M (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97. 1–136. https://doi.org/10.1007/s13225-019-00430-9.
Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. Journal of Medical Plants Study 6(3b), 112-115. https://doi.org/10.22271/plants.2018.v6.i3b.07.
Koç, I., Nam, A., Mendes, M., Pinar, S.M., Çiğ, F.& Yardim, E.N. (2019). A study on the effects of wood vinegar on weeds and cultivated plants in the wheat agro-ecosystems. Fresenius Environmental Bulletin 28(4), 2747-2753.
Leclerc, M., Doré, T., Gilligan, C.A., Lucas, P. & Filipe, J.A.N. (2014). Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS ONE 9(1), e86568. https://doi.org/10.1371/journal.pone.0086568.
Li, J., Wei, T., Sun, A.-R., & Ni, H.-W. (2013). Evaluation of Curvularia lunata strain B6 as a potential mycoherbicide to control barnydrgrass (Echinochloa crus-galli). Journal of Integrative Agriculture 12(7), 1201-1207. https://doi.org/10.1016/S2095-3119(13)60441-4.
Li, T., Zhan, C., Guo, G., Liu, Z., Hao, N., & Ouyang, P. (2021). Tofu processing wastewater as a low-cost substrate for high activity nattokinase production using Bacillus subtilis. BMC Biotechnology 21(1), 57. https://doi.org/10.1186/s12896-021-00719-1.
Loddo, D., Mcelroy, S., & Giannini, V. (2021). Problems and perspectives in weed management. Italian Journal of Agronomy 16(4), 1854. https://doi.org/10.4081/ija.2021.1854.
Lok, B., Adam, M.A.A., Kamal, L.Z.M., Chukwudi, N.A., Sandai, R., & Sandai, D. (2021). The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity. Medical Mycology 59(2): 115-125. https://doi.org/10.1093/mmy/myaa080.
Magday Jr., J.C., Bungihan, M.E., & Dulay, R.M.R. (2014). Optimization of mycelial growth and cultivation of fruiting body of Philippine wild strain of Ganoderma lucidum. Current Research in Environmental & Applied Mycology, 4(2), 162-172. https://doi.org/10.5943/cream/4/2/4.
Nabayi, A., Teh, C.B.S., Zuan, A.T.K., Ngai, P.T. & Akhir, N.I.M. (2021) Chemical and microbial characterization of washed rice water waste to assess its potential as plant fertilizer and for increasing soil health. Agronomy 11, 2391. https://doi.org/10.3390/agronomy11122391.
Negi, B., Bargali, S.S., Bargali, K. & Khatri, K. (2020). Allelopathic interference of Ageratum conyzoides L. against rice varieties. Cur Agric Res J 8(2), 69-76. https://doi.org/10.12944/CARJ.8.2.01.
Neher, D.A., Weicht, T.R., Bates, S.T., Leff, J.W. & Fierer, N. (2013). Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 8(11), e79512. https://doi.org/10.1371/journal.pone.0079512.
Nottingham, A.T., Hicks, L.C., Ccahuana, A.J.Q., Salinas, N., Bååth, E., & Meir, P. (2018). Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils 54(2). https://doi.org/10.1007/s00374-017-1247-4.
Omeike, S.O., Kareem, S.O, & nLasisi, A.A. (2019). Potential antibiotic-producing fungal strains isolated from pharmaceutical waste sludge. Beni-Suef University Journal of Basic & Applied Science 8(18). https://doi.org/10.1186/s43088-019-0026-8.
Paraschivu, M., Cotuna, O., & Paraschivu, M. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science 45 (1), 193-201.
Park, M.-J., Back, C.-G.& Park, J.H. (2020). Occurrence of Cercospora leaf spot caused by Cercospora cf. flagellaris on melon in Korea. Mycobiology 48(5): 418-422. https://doi.org/10.1080/12298093.2020.1792133.
Purnama, S.G., Pandy, D.S, & Sudiana, I.G. (2012). Utilization of tofu processing industry wastewater to produce Bacillus thuringiensis serevora israelensis spores and its application as a biocontrol of mosquito larvae. The Indonesian Journal of Public Health 1 (1), 1-9.
Ramirez-Gil, J.G., Castaneda-Sanchez, D.A., & Morales-Osorio, J.G. (2017). Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathology 66, 623–632. https://doi.org/10.1111/ppa.12620.
Ravimannan, N., Arulanantham, R., Pathmanathan, S. & Niranjan, K. (2014). Alternative culture media for fungal growth using different formulation of protein sources. Annual of Biological Research 5 (1), 36-39.
Rukmini, J.N., Manasa, S., Rohini, C., Sireesha, L.P., Ritu, S., & Umashankar, G.K. (2017). Antibacterial efficacy of tender coconut water (Cocos nucifera L) on Streptococcus mutans: An in-vitro study. Journal of International Society of Preventive & Community Dentistry 7(2), 130–134. https://doi.org/10.4103/jispcd.JISPCD_275_16.
Scholz, C., Kohlbrecher, M., Ruckelshausen, A., Kinski, D., & Mentrup, D. (2014). Camera-based selective weed control application module(“Precision Spraying App”) for the autonomous field robotplatform BoniRob. Conference: International Conference of Agricultural Engineering at Zürich, 6-10 July 2014.
Shirgapure, K.H. & Ghosh, P. (2020). Allelopathy a tool for sustainable weed management. Archives of Current Research International 20(3), 17-25. https://doi.org/10.9734/acri/2020/v20i330180.
Singh, U.P., Kamboj, A. & Sharma, M. (2020). Herbicide resistance in weed and its management-A review. International Journal of Education Technique & Science Research 8(12), 2455-6211.
Soesanto, L., Mugiastuti, E., & Manan, A. (2020). The potensial of Fusarium sp. and Chaetomium sp. as biological control agents of five broad-leaf weeds. Caraka Tani: Journal of Sustainable Agriculture. 35(2), 299-307. http://dx.doi.org/10.20961/carakatani.v35i2.35713.
Soesanto, L., Mugiastuti, E., & Manan, A. (2021). The use of alternative liquid media for propagation of pathogenic fungi and their effect on weeds. Biodiversitas 22(2), 719-725. https://doi.org/10.13057/biodiv/d220224.
Steinkellner, S., Mammerler, R., & Vierheilig, H. (2005). Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interaction 1(1), 23-30. https://doi.org/10.1080/17429140500134334.
Uthayasooriyan, M., Pathmanathan, S., Ravimannanand, N. & Sathyaruban, S. (2016). Formulation of alternative culture media for bacterial and fungal growth. Der Pharmacia Lettre 8(1), 431-436.
van Bruggen, A.H.C., Finckh, M.R., He, M., Ritsema, C.J., Harkes, P., Knuth, D., & Geissen, V. (2021). Indirect effects of the herbicide glyphosate on plant, animal and human health through its effects on microbial communities. Frontier in Environmental Science 9, 763917. https://doi.org/10.3389/fenvs.2021.763917.
van Dijk, L.J.A., Ehrlén, J. & Tack, A.J.M. (2021). Direct and insect-mediated effects of pathogens on plant growth and fitness. Journal of Ecology 109(7), 2769-2779. https://doi.org/10.1111/1365-2745.13689.
Velivelli, S.L.S., Vos, P.D., Kromann, P., Declerck, S. & Prestwich, B.D. (2014). Biological control agents: from field to market, problems, and challenges. Trends Biotechnology 32(10), 493-496. https://doi.org/10.1016/j.tibtech.2014.07.002.
Walter, M., Boyd-Wilson, K.S.H., Perry, J.H., Elmer, P.A.G. & Frampton, C.M. (2010). Survival of Botrytis cinerea conidia on kiwifruit. Plant Pathology 48(6), 823-829. https://doi.org/10.1046/j.1365-3059.1999.00413.x.
Wang, S.-K., Wang, X., Miao, J., & Tian, Y.-T. (2018). Tofu whey wastewater is a promising basal medium for microalgae culture. Bioresource Technology 253, 79-84. https://doi.org/10.1016/j.biortech.2018.01.012.
Wongjiratthiti, A. & Yottakot,S. (2017). Utilisation of local crops as alternative media for fungal growth. Pertanika Journal of Tropical Agricultural Science 40(2), 295-304.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Loekas Soesanto, Murti Ragil Wisnu Sastyawan, Abdul Manan, Endang Mugiastuti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.