Determination of the optimum initial callus weight for the efficient propagation of sugarcane in temporary immersion bioreactor

Authors

  • Rizka Tamania SAPTARI Indonesian Research Institute for Biotechnology and Bioindustry http://orcid.org/0000-0002-3425-7571
  • Imron RIYADI Indonesian Research Institute for Biotechnology and Bioindustry
  • Masna Maya SINTA Indonesian Research Institute for Biotechnology and Bioindustry
  • M Eko Riyo Bayu PRASETYO Indonesian Research Institute for Biotechnology and Bioindustry
  • Sylvia LINDAWATI Pusat Penelitian Perkebunan Gula Indonesia
  • Sumaryono SUMARYONO Indonesian Research Institute for Biotechnology and Bioindustry

DOI:

https://doi.org/10.22302/iribb.jur.mp.v90i2.505

Keywords:

in vitro culture, liquid culture, proliferation

Abstract

Abstrak

Bioreaktor perendaman sesaat (BPS) telah digunakan secara luas untuk propagasi skala massal berbagai tanaman penting, termasuk tanaman tebu. BPS menyediakan sistem kultur semi-otomatis dan kondisi optimal bagi pertumbuhan tanaman. Beberapa faktor menentukan pertumbuhan tanaman pada BPS, salah satunya densitas dari eksplan. Oleh karena itu, penelitian dilakukan untuk menentukan bobot awal yang optimal untuk kalus tebu yang dikulturkan pada BPS, serta mengevaluasi pengaruh perbedaan bobot awal kalus tersebut terhadap proliferasi dan regenerasi kalus tebu. Kalus tebu diinduksi dari daun muda yang masih menggulung dari empat varietas tebu unggul Indonesia. Bobot awal kalus yang dikultur ke dalam bejana TIB yaitu 0,05 g; 0,1 g; 0,2 g; 0,5 g; dan 1,0 g untuk setiap bejana. Kalus kemudian melalui tahap proliferasi pada BPS sebanyak tiga siklus, kemudian kalus diregenerasi pada BPS dengan perlakuan auksin dan sitokinin. Hasil penelitian menunjukkan bahwa 0,2 g merupakan bobot awal kalus yang efisien untuk proliferasi kalus tebu pada TIB, dimana eksponensial multiplikasi kalus tercapai pada bobot awal tersebut, yaitu untuk masing-masing varietas 130,3 kali (PSKA 942), 136,8 kali (PS 094), 21,3 (PS 881), dan 12,9 kali (PS 091) setelah 12 minggu. Densitas kalus pada TIB berkorelasi negatif dengan karakteristik fisikokimia medium. Hal ini menggambarkan variasi intensitas pertumbuhan dan metabolisme kalus dengan adanya perbedaan densitas pada BPS. Penggunaan BAP 0,2 mg L-1 bersama kinetin 0,2 mg L-1 paling sesuai untuk memacu regenerasi kalus tebu dengan menghasilkan jumlah tunas terbanyak dalam waktu relatif lebih cepat (1 – 2 minggu lebih cepat) dibandingkan perlakuan lainnya dan dengan tingkat kejadian pencoklatan yang rendah.

[Kata kunci: kultur in vitro, kultur cair, proliferasi]

Abstract

Temporary immersion bioreactor (TIB) has been utilized for the mass-scale propagation of many important plants, including sugarcane. TIB facilitates a semiautomated culture system and provides optimal conditions for plant growth. Several factors determine plant growth in the TIB, such as explant density. Therefore, an experiment was carried out to determine the optimal initial weight of sugarcane calli and to evaluate its effect on the proliferation and regeneration in TIB. Sugarcane calli were induced from spindle leaves isolated from four Indonesian prime sugarcane varieties. The initial weights of the calli cultured in the TIB flasks were 0.05 g, 0.1 g, 0.2 g, 0.5 g and 1.0 g per flask. The calli were proliferated through three cycles in TIB, and subsequently regenerated in TIB with auxin and cytokinin treatments. The results of the experiments showed that 0.2 g was the most efficient initial weight for sugarcane callus proliferation in the TIB, resulting in an exponential multiplication rate of 130.3-fold (PSKA 942), 136.8-fold (PS 094), 21.3-fold (PS 881), and 12.9-fold (PS 091) within 12 weeks. In the TIB, callus density showed a negative correlation with the physicochemical properties of the medium, demonstrating various growth intensities or metabolic activities of calli at different densities in the TIB. The use of 0.2 mg L-1 BAP along with 0.2 mg L-1 kinetin was suitable for promoting the regeneration of sugarcane calli and producing the highest number of shoots in a relatively short amount of time (1 – 2 weeks faster) with low incidences of browning.

[Keywords: in vitro culture, liquid culture, proliferation]

 

Downloads

Download data is not yet available.

References

Aguilar ME, K Garita, YW Kim, J Kim & HK Moon (2019). Simple protocol for the micropropagation of teak (Tectona grandis Linn.) in semi-solid and liquid media in RITA bioreactors and ex vitro rooting. Am J Plant Sci 10, 1121–1141.

Arencibia AD, A Bernal & L Yang, L Cortegaza, ER Carmona, A Perez, C Hu, Y Li, CM Zayas & I Santana (2008). New role of phenylpropanoid compounds during sugarcane micropropagation in Temporary Immersion Bioreactors (TIBs). Plant Sci 175, 487–496.

Azizi AAA, I Roostika, R Reflinur & D Efendi (2020). Analysis of genetic stability of micropropagated sugarcane in different subculture frequencies using SSR marker. Jurnal Penelitian Tanaman Industri 26, 49–57.

Bello-Bello, JJ, S Schettino-Salomon, J Ortega-Espinoza & JL Spinoso-Castillo (2021). A temporary immersion system for mass micropropagation of pitahaya (Hylocereus undatus). 3 Biotech 11, 437.

Chuanjun X, R Zhiwei, L Ling, Z Biyu, H Junmei, H Wen & H Ou (2015). The effects of polyphenol oxidase and cycloheximide on the early stage of browning in Phalaenopsis explants. Hort Plant J 1(3), 172–180.

Cheng P, Y Wang, D Osei-Wusu, T Liu & D Liu (2018). Effects of seed age, inoculum density, and culture conditions on growth and hydrocarbon accumulation of Botryococcus braunii SAG807-1 with attached culture. Bioresour Bioprocess 5, 1–9.

De Carlo A, W Tarraf, M Lambardi & C Benelli (2021). Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 11, 2414.

Dewanti P, LI Widuri, FN Alfian, HS Addy, P Okviandari & B Sugiharto (2016). Rapid propagation of virus-free sugarcane (Saccharum officinarum) by somatic embryogenesis. Agric Agric Sci Procedia 9, 456–461.

Dinesh P, P Thirunavukkarasu, AR Saraniya & T Ramanathan (2015). In vitro studies of sugarcane cariety co-91017 through micropropagation of shoot tip culture. Adv Plants Agric Res 2(6), 263-268.

Duan Y, Y Su, E Chao, G Zhang, F Zhao, T Xue, W Sheng, J Teng & J Xue (2018). Callus-mediated plant regeneration in Isodon amethystoides using young seedling leaves as starting materials. Plant Cell Tiss Org Cult 136, 247–253.

Ekmekçigil M, M Bayraktar, Ö Akkuş & A Gürel (2019). High-frequency protocorm-like bodies and shoot regeneration through a combination of thin cell layer and—RITA ® temporary immersion bioreactor in Cattleya forbesii Lindl. Plant Cell Tiss Org Cult 136, 451–464.

Georgiev V, A Schumann, A Pavlov & T Bley (2014). Temporary immersion systems in plant biotechnology. Eng Life Sci 14, 607–621.

Gómez-Kosky R, PM Armas, MB Calimano, AB Villegas, Y Otero, DN Jaramillo, JA Ferreiro, DD Daniels & LP Perez (2020). Effect of phloroglucinol on in vitro rooting of sugarcane (Saccharum spp. cv C90-469). Sugar Tech 23, 466–471.

Hill K & GE Schaller (2013). Enhancing plant regeneration in tissue culture: A molecular approach through manipulation of cytokinin sensitivity. Plant Signal Behav 8, 1–5.

Ikeuchi M, K Sugimoto & A Iwase (2013). Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159–3173.

Jones AMP & PK Saxena (2013). Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLOS ONE 8(10), e76802.

Kaur A & JS Sandhu (2015). High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: Cost analysis for agri-business industry. Plant Cell Tiss Org Cult 120(1), 339–350.

Kaur R & M Kapoor (2016). Plant regeneration through somatic embryogenesis in sugarcane. Sugar Tech 18(1), 93-99.

Li SF, TW Ye, X Xu, D Yuan & S Xiao (2021). Callus induction, suspension culture and protoplast isolation in Camellia oleifera. Sci Hort 286, 1–7.

Lorenzo JC, BL González, M Escalona, C Teisson & C Borroto (1998). Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss Org Cult 54, 197–200.

Minarsih H, I Riyadi & Sumaryono (2013). Mikropropagasi tebu (Saccharum officinarum L.) menggunakan sistem perendaman sesaat. Menara Perkebunan 81(1), 1-8.

Mordocco AM, JA Brumbley & P Lakshmanan (2008). Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol 45, 450–457.

Motte H, D Vereecke, D Geelen & S Werbrouck (2014). The molecular path to in vitro shoot regeneration. Biotech Adv 32, 107–121.

Murashige T & F Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15, 473-497.

Mustafa G & MS Khan (2015). Differential role of indolebutyric acid in sugarcane root development. Sugar Tech 18, 55–60.

Nickell LG (1964). Tissue and cell cultures of sugarcane: another research tool. Hawaii Plant Rec 57, 223-229.

Polzin F, I Sylvestre, E Déchamp, P Ilbert, H Etienne & F Engelmann (2014). Effect of activated charcoal on multiplication of African yam (Dioscorea cayenensis-rotundata) nodal segments using a temporary immersion bioreactor (RITA®). In Vitro Cell Dev Biol Plant 50, 210–216.

Rahman ZA, ZA Seman, AN Othman, MBA Ghaffar, SA Razak, MMFM Yusof, KH Nasir, K Ahmad, YL Chow & S Subramaniam (2021). Efficient callus induction and plant regeneration of Malaysian indica rice MR219 using anther culture. Biocatal Agric Biotechnol 31, 101865.

Redae MH & TG Ambaye (2018). In vitro propagation of sugarcane variety C86-165 through apical meristem. Biocatal Agric Biotechnol 14, 228-234.

Sane, D, F Aberlenc-Bertossi, YK Gassama-Dia, M Sagna, MF Trouslot, Y Duval & A Borgel (2006). Histocytological analysis of callogenesis and somatic embryogenesis from cell suspensions of date palm (Phoenix dactylifera) Ann Bot 98, 301.

San José MMC, N Blazquez, MMJ Cernadas, LV Janeiro, B Cuenca, C Sanchez & N Vidal (2020). Temporary immersion systems to improve alder micropropagation. Plant Cell Tiss Org Cult 143, 265-275.

Silveira, V, AM de Vita, AF Macedo, MFR Dias, EIS Floh & C Santa-Catarina (2013). Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tiss Org Cult 114, 351-364.

Suprasanna P, RS Choudhary, NS Desai & VA Bapat (2005). Regulation of somatic embryogenesis by plant growth regulators in sugarcane. Sugar Tech 7(4), 123-128.

Uma S, R Karthic, S Kalpana, S Backiyarani & MS Saraswathi (2021). A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB-Silk). Sci Rep 11, 20371.

Yoshida S, S Saiga & D Weijers (2013). Auxin regulation of embryonic root formation. Plant Cell Physiol 54, 325–332.

Zhang B, L Song, LD Bekele, J Shi, Q Jia, B Zhang, L Jin, GJ Duns & J Chen (2018). Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci Hortic 232, 121–126.

Zhang K, J Su, M Xu, Z Zhou, X Zhu, X Ma, J Hou, L Tan, Z Zhu, H Cai, F Liu, H Sun, P Gu, C Li, Y Liang, W Zhao, C Sun & Y Fu (2020). A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Com 11, 1–15.

Downloads

Submitted

19-08-2022

Accepted

11-10-2022

Published

31-10-2022

How to Cite

SAPTARI, R. T., RIYADI, I., SINTA, M. M., PRASETYO, M. E. R. B., LINDAWATI, S., & SUMARYONO, S. (2022). Determination of the optimum initial callus weight for the efficient propagation of sugarcane in temporary immersion bioreactor. Menara Perkebunan, 90(2). https://doi.org/10.22302/iribb.jur.mp.v90i2.505