Gibberellic acid (GA) role in acetyl-coA carboxylase enzyme regulation and in improving oil palm yield
DOI:
https://doi.org/10.22302/iribb.jur.mp.v91i2.533Keywords:
ACCs, WRI1, TCP4, phosphorylation, fatty acidsAbstract
Seaweed specifically, Sargassum sp. is known to contains a boosting hormone growth that has been promoted plant growth and yield due to the containing of auxin, gibberelic acid (GA) and cytokinine, and also some amino acids especially glutamic acid. Those composition could be used as an booster of palm oil production which related to acetyl co-A carboxylase activity (ACC). ACC is the rate determination step in fatty acid accumulation, and becomes active through dephosphorylation of some serine residues that induced by magnesium and glutamate. Moreover, ACC was regulated by AtWRI1 and AtWRI1-TCP4 interaction, a mechanism that allow fine-tuning of the oil biosynthetic pathway. In this research we conducted gene expression experiments, and molecular docking analyses to study the possible mechanism of seaweed composition stimulating oil accumulation in the oil palm. Further analysis was conducted to ensure whether the interaction between TCP4 and candidate inhibitors were able to phosphorylate TCP4 and decrease its activity. GA application resulted in the increase of oil accumulation in 1 month after application, although in the second month the oil accumulation showed decreasing. Increase of oil accumulation in the first month in line with the increase of the expression of ACC in 3rd and 5th weeks. Meanwhile, TCP4 showed decrease expression that resulted in the increase of the WRI1 in 5th week. From this result, it was indicated that GA application could block the TCP4, so it could not interact with WRI1, resulted in the expression of WRI1 and ACC. This interaction stimulates the oil accumulation in oil palm.
Downloads
References
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3), 531. https://doi.org/ 10.3390/plants10030531
Chandel, V., Raj, S., Rathi, B., & Kumar, D. (2020). In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: a drug repurposing approach.
Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P. & Miano, T. (2011). Comparative management of offshore posidonia residues: composting vs. energy recovery. Waste Management (Oxford), 31, 78–84. https://doi.org/10.1016/j.wasman. 2010.08.016
Gaussin, V., Hue, L., Stalmans, W. & Bollen, M. (1996). Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A. Biochemical Journal, 316(1), 217-224. https://doi.org/10.1042 /bj3160217
Hardie G.D & Carling D. (1997). The AMP-activated protein kinase: Fuel gauge of the mammalian cell. European Journal of Biochemistry, 246, 259 –273. https: //doi.org/10.1111/j.1432-1033.1997. 00259.x
Haas, J., Roth, S., Arnold, K., Kiefer, F., Schmidt, T., Bordoli, L., & Schwede, T. (2013). The Protein Model Portal—a comprehensive resource for protein structure and model information. Database, 2013. https://doi.org/ 10.1093/database /bat031
Kong, Q., Singh, S. K., Mantyla, J. J., Pattanaik, S., Guo, L., Yuan, L., & Ma, W. (2020). Teosinte Branched1/Cycloidea/Proliferating Cell Factor4 Interacts with Wrinkled1 to mediate seed oil biosynthesis. Plant Physiology, 184(2), 658-665. https://doi.org/10.1104/ pp.20.00547
Kong, Q., Yang, Y., Guo, L., Yuan, L., & Ma, W. (2020). Molecular basis of plant oil biosynthesis: Insights gained from studying the WRINKLED1 transcription factor. Frontiers In Plant Science, 11, 24. https://doi.org/10.3389/fpls.2020 .00024
Kowluru, A H Q Chen, L M. Modrick & C Stefanelli. (2001). Activation of Acetyl-CoA Carboxylase by a Glutamate and Magnesium-Sensitive Protein Phosphatase in the Islet b-Cell. Diabetes, 50. https://doi.org/10.2337/ diabetes.50.7.1580
Kresnawaty, I. Priyono, A. Budiani, D.A Sari, S. Hudiyono & D.Santoso. (2023). Seaweed extract-based biotimulant increased oil yield of early productive oil palms. (unpublished)
Kubota, A., Ito, S., Shim, J. S., Johnson, R. S., Song, Y. H., Breton, G., & Imaizumi, T. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genetics, 13(6), e1006856. https://doi.org/10. 1371/journal.pgen.1006856
Liu, Y., Guan, X., Liu, S., Yang, M., Ren, J., Guo, M., & Zhang, Y. (2018). Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage. International Journal of Molecular Sciences, 19(3), 847. https://doi.org/ 10.3390/ijms19030847
Lu, Y., Yuan, M., Gao, X., Kang, T., Zhan, S., Wan, H., & Li, J. (2013). Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PloS One, 8(7), e68059. https://doi.org/10.3390/life12091379
Ohlrogge, J. B., Jaworski, J. G., & Post-Beittenmiller, D. (2018). De novo fatty acid biosynthesis. In Lipid Metabolism in Plants (pp.3-32). CRC Press. https://doi.org/10.1201/ 9781351074070-2
Gibberellic acid (GA) role in acetyl co-A carboxylase enzyme regulation and in improving oil palm yield….....(Kresnawaty et al.)
Perez, M., Guerringue, Y., Ranty, B., Pouzet, C., Jauneau, A., Robe, E., & Aldon, D. (2019). Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains. Plant Science, 287, 110-197. https://doi.org/10.1016/j.plantsci. 2019.110197
Pradhan, B., Bhuyan, P. P., Patra, S., Nayak, R., Behera, P. K., Behera, C., & Jena, M. (2022). Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective. Biocatalysis and Agricultural Biotechnology, 39, 102242. https://doi.org/10.1016/j.bcab.2021.102242
Putranto, R. A., Leclercq, J., & Montoro, P. (2015). Evaluation of eleven reference genes for Reverse Transcriptase Quantitative PCR of rubber tree under water. Menara Perkebunan, 83(2), 86–94 https://doi.org/10.22302/iribb. jur.mp.v83i2.5
Vavvas D, A Apazidis, A Saha, J Gamble, A Patel, BE Kemp, LA Witters, & NB Ruderman. (1997). Contraction-induced changes in acetyl CoA carboxylase and 59-AMP-activated kinase in skeletal muscle. Journal of Biological Chemistry, 272, 13255–13261. https://doi.org/10.1074/jbc. 272. 20.13255
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 irma Kresnawaty, Djoko Santoso, Galuh Wening Permatasari, Sumi Hudiyono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.