Production and profiling bioflavor compound from fermentation OPEFB hydrolysate and CPO by Lactobacillus sp.


  • Firda Dimawarnita Indonesian Oil Palm Research Institute-Bogor Unit
  • Azzakiyya Salsabila Syifa Kusuma Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya
  • Urip Perwitasari National Research and Innovation Agency
  • Elok Zubaidah Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya
  • Yora Faramitha Indonesia Oil Palm Research Institute-Bogor Unit
  • Pijar Religia International Center for Biotechnology, Osaka University
  • Ario Betha Juanssilfero National Research and Innovation Agency.



carbon nitrogen sources, flavor, GC-MS, microorganism


Bioflavor is a type of natural flavor that is obtained from microbial metabolites during the process of fermentation. Most of the bacteria involved in food fermentation are lactic acid bacteria, including Lactobacillus sp. The optimal medium for Lactobacillus sp. growth is de Man Rogosa and Sharpe (MRS), but it is considered to be less economical. Therefore, alternative carbon and nitrogen sources are needed. This study aimed to determine the bioflavor produced in de Man Rogosa dan Sharpe Broth (MRSB) media that was substituted with Oil Palm Empty Fruit Bunch (OPEFB) hydrolysate and Crude Palm Oil (CPO) at concentrations of 5, 15, and 30%, respectively by using gas chromatography-mass spectrometry. The results showed that substituting MRSB with 15% CPO produced the best results for the growth of Lactobacillus sp. However, each medium produced different bioflavor compounds. In the control media (MRSB), the highest amount of bioflavor compound was 2,3-dihydro-3,5-dihydroxy-6-methyl -4H-Pyran-4-one (rose tea). In the OPEFB hydrolysate-substituted medium, it was benzene-acetaldehyde (sweet, bread, rose), in the CPO-substituted medium, it was furaneol (pineapple and strawberry) and pyrazine (nutty, roasted coffee).


Download data is not yet available.


Adisa, A. M., Adepeju, A. B., & Yusuf, A. K. (2019). Influence of pH and acidity on the fermentation of finger millet spiced ogi. Food Environment Safety Journal, 18(3), 214–222.

Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I. M., & Koutinas, A. A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 145, 710–716.

Khan, A.S., Liu, L., Lai, T., Zhang, R., Wei, Z., Xiao, J., Deng, Y., & Zhang, M. (2018). Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria. Journal Food Science and Technology, 55(12), 4782–4791.

Aliya, H., Maslakah, N., Numrapi, T., Buana, A. P., & Hasri, Y. N. (2015). Pemanfaatan asam laktat hasil fermentasi limbah kubis sebagai pengawet anggur dan stroberi. Bioedukasi, 9(1), 23–28.

Aljaff, P., Rasheed, B. O., & Omer, T. A. (2013). A Comparison between natural and synthetic food flavoring extracts using infrared spectra and optical activity. IOSR Journal of Applied Physics, 5(3), 1–6.

Andruszkiewicz, P. J., D’Souza, R. N., Altun, I., Corno, M., & Kuhnert, N. (2019). Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 121, 217–228.

Arfianty, B. N., Farisi, S., & Ekowati, C. N. (2017). Dinamika populasi bakteri dan total asam pada fermentasi bekasam ikan patin (Pangasius Hypopthalmus). Jurnal Biologi Eksperimen Dan Keragaman Hayati, 4(2), 43–49.

Arifin, H., Abdullah, N., Kalsom, M. S. U., Shirai, Y., & Hassan, M. A. (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3(1), 47–53.

Ayad, A. A., Gad El-Rab, D. A., Ibrahim, S. A., & Williams, L. L. (2020). Nitrogen sources effect on Lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) by-products. Fermentation, 6(3), 1–10.

Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Molecular Nutrition and Food Research, 62(18), 1–13.

Bintsis, T. (2018). Lactic acid bacteria: Their applications in foods. Journal of Bacteriology And Mycology, 6(2), 89–94.

Bücher, C., Burtscher, J., & Domig, K. J. (2021). Propionic acid bacteria in the food industry: An update on essential traits and detection methods. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4299–4323.

Carroll, A. L., Desai, S. H., & Atsumi, S. (2016). Microbial production of scent and flavor compounds. Current Opinion in Biotechnology, 37, 8–15.

Chen, Z., Liu, Q., Zhao, Z., Bai, B., Sun, Z., Cai, L., Fu, Y., Ma, Y., Wang, Q., & Xi, G. (2021). Effect of hydroxyl on antioxidant properties of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one to scavenge free radicals. RSC Advances, 11(55), 34456-34461.

Cheng, F., Chen, H., Lei, N., Zhang, M., & Wan, H. (2019). Effects of carbon and nitrogen sources on activity of cell envelope proteinase produces by Lactobacillus plantarum LP69. Acta Universitatis Cibiniensis Series E: Food Technology, 11(1), 11-18.

De Vivo, A., Genovse, A., Tricarico, M. C., Aprea, A., Sacchi, R., & Sarghini, F. (2022). Volatile compounds in espresso resulting from a refined selection of particle size of coffee powder. Journal of Food Composition and Analysis, 114, 1–10.

Destyorini, F., & Indayaningsih, N. (2018). Pemanfaatan tandan kosong kelapa sawit sebagai bahan baku kertas karbon. Piston: Journal of Technical Engineering, 1(2), 7–12.

Dewi, E. N., Nurhana, N., Septiningrum, S., Rianingsih, L., & Riyadi, P. H. (2020). Optimization of carbon source and concentration for Lactobacillus acidophilus growth, phenolic production and antioxidant activity in fermented seaweed extract. iJET, 11(5), 495–500.

Dippong, T., Dan, M., Konvacs, M. H., Konvacs, E. D., Levei, E. A., & Cadar, O. (2022). Analysis of volatile compound, composition and thermal behavior of coffee beans according to variety and roasting intensity. Foods, 11(3146), 1–15.

Escobar, A., Sathicq, Á., Pizzio, L., Blanco, M., & Romanelli, G. (2015). Biomass valorization derivatives: Clean esterification of 2-furoic acid using tungstophosphoric acid/zirconia composites as recyclable catalyst. Process Safety and Environmental Protection, 98, 176–186.

Fadilah, U., Wijaya, I. M. M., & Antara, N. S. (2018). Studi pengaruh pH awal media dan lama fermentasi pada proses produksi etanol dari hidrolisat tepung biji nangka dengan menggunakan Saccharomycess cerevisiae. Jurnal Rekayasa Dan Manajemen Agroindustri, 6(2), 92–102.

Fan, G., Du, Y., Fu, Z., Chen, M., Wang, Z., Liu, P., & Li, X. (2020). Characterisation of physicochemical properties, flavour components and microbial community in Chinese Guojing roasted sesame-like flavour Daqu. Journal of the Institute of Brewing, 126(1), 105–115.

Güneşer, O., Demirkol, A., Karagül Yüceer, Y., Özmen Toğay, S., İşleten Hoşoğlu, M., & Elibol, M. (2015). Bioflavour production from tomato and pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Bioprocess and Biosystems Engineering, 38(6).

Guneser, O., Demirkol, A., Yuceer, Y. K., Togay, S. O., Hosoglu, M. I., & Elibol, M. (2017). Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology, 48(2), 275–285.

Guo, J., Zhao, R., Li, J., Wu, D., Yang, Q., Zhang, Y., & Wang, S. (2019). Furan formation from ingredient interaction and furan mitigation by sugar alcohols and antioxindant of bamboo leaves in milk beverage model systems. Journal of the Sciencce Food and Agriculture, 99(11), 4993-4999.

Habibah, F., Yasni, S., & Yuliani, S. (2018). Karakteristik fisikokimia dan fungsional pati hidrotermal ubi jalar ungu. Jurnal Teknologi Dan Industri Pangan, 29(1), 69–76.

Hamilah, L. S., Paryati, S. P. Y., & Nawangsih, E. N. (2018). The Influence of medium pH on Lactobacillus acidophillus viability in soyghurt tested in vitro and in vivo. Proc. of the 20th FAVA CONGRESS & the 15th KIVNAS PDHI, 245–246.

Hassan, S. S., Malek, R. A., Atim, A., Jikan, S. S., & Mohd Fuzi, S. F. Z. (2014). Effects of different carbon sources for high level lactic acid production by Lactobacillus casei. Applied Mechanics and Materials, 2(1), 10–14.

Iswari P, I. A. S., Wijaya, I. M. M., & Suwariani, N. P. (2022). Determination of fermentation time and initial pH of media in ethanol production by isolate BM1-CP14. Jurnal Rekayasa Dan Manajemen Agroindustri, 10(4), 513–521.

Koruda, K., Miyamura, K., Satria, H., Takada, K., Ninomiya, K., & Takahashi, K. (2016). Hydrolysis of cellulose using an acidic and hydrophobic ionic liquid and subsequent separation of glucos aqueos solution from the ionic liquid and 5-(hydroxymethyl) furfural. ACS Sustainable Chemical Engineering, 4, 3352–3356.

Kresnowati, M. T. A. P., Setiadi, T., Tantra, T. M., & Rusdi, D. (2016). Microbial production of xylitol from oil palm empty fruit bunch hydrolysate: Effects of inoculum and pH. Journal Engineering Technology and Science, 48(5), 523–533.

Lalou, S., Mantzouridou, F., Paraskevopoulou, A., Levic, S., & Nedovic, V. (2013). Bioflavour production from orange peel hydrolaste using immobilized Saccharomyces cerevisiae. Biotechnological Products and Process Engineering, 97, 9397–9407.

Li, R., Luo, W., Liu, Y., Chen, C., Chen, S., Yang, J., Wu, P., Lv, X., Liu, Z., Ni, L., & Han, J. (2022). The investigation on the characteristic metabolites of Lactobacillus pantarum RLL68 during fermentation of beverage from by-products of black tea manufacture. Current Research in Food Science, 5, 1320–1329.

Lie, S. (1973). The EBC-Ninhydrin method for determination of free alpha amino nitrogen. Journal of the Institute of Brewing, 79, 37–41.

Ma, L., Meng, Q., Chen, F., & Gao, W. (2022). SAFE and SBSE combined with GC‐MS and GC‐O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. Journal of Food Science, 87(3), 939–956.

Melia, S., Juliyarsi, I., Kurnia, Y. F., Pratama, Y. E., & Azahra, H. (2021). Examination of titratable acidity, pH, total lactic acid bacteria and sensory properties in whey fermented with probiotic Pediococcus acidilactic BK01. Advances in Animal and Veterinary Sciences 10(1), 114–119.

Mezo, E., Balogh, F. H., Horvath, I. M., Bufa, A., Marosvolgi, T., Kocsis, B., & Makszin, L. (2022). Effect of culture conditions on fatty acid profiles of bacteria and lipopolysaccharides of the genus Pseudomonas - GC-MS analysis on ionis liquid-based column. Molecules, 27(6930), 1–21.

Mortzfeld, F. B., Hashem, C., Vranková, K., Winkler, M., & Rudroff, F. (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnology Journal, 15(11), 1–7.

Ndagijimana, M., Melania Vallicelli, Cocconcelli, S., Cappa, F., Patrignani, F., Lanciotti, R., & Guerzoni, M. E. (2006). Two 2(5H)-furanones ad possible signaling molecules in Lactobacillus helveticus. Applied and Enviromental Microbiology, 72, 6053–6061.

Nguyen-Sy, T., Yew, G. Y., Chew, K. W., Nguyen, T. D. P., Tran, T. N. T., Le, T. D. H., Vo, C. T., Tran, H. K. P., Mubashir, M., & Show, P. L. (2020). Potential cultivation of Lactobacillus pentosus from human breastmilk with rapid monitoring through the spectrophotometer method. Processes, 9(902), 2–9.

Orsavova, J., Misurcova, L., Ambrozova, J. V, Vicha, R., & Mlcek, J. (2015). Fatty acid composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16, 12871–12890.

Pato, U., Yusuf, Y., Panggabean, I. P., Handayani, N. P., Kusuma, A. N., Adawiyah, N., & Jaswir, I. (2021). Viability of lactic acid bacteria, fatty acid profile and quality of cocoghurt made using local and commercial starters during fermentation. International Journal of Agricultural Technology, 17(3), 1001–1014.

Putri, N. I. C. A., Ramadhani, & Wasito, E. B. (2021). Gram negative bacteria (Escherichia coli) win against gram positive bacteria (Staphylococcus aureus) in the same media. Biomolecular and Health Science Journal, 4(02), 114–117.

Ram, Y., Dellus-Gus, E., Bibi, M., Karkare, K., Oboiski, U., Feldman, M. W., Cooper, T. F., Berman, J., & Hadany, L. (2019). Predicting microbial growth in a mixed culture from growth curve data. The Proceedings of the National Academy of Sciences, 116(29), 14698–14707.

Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., Baranyi, J., Peck, M. W., & Hinton, J. C. D. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686–801.

Román, S., Sánchez-Siles, L. M., & Siegrist, M. (2017). The importance of food naturalness for consumers: Results of a systematic review. Trends in Food Science & Technology, 67, 44–57.

Salmina. (2017). Studi pemanfaatan limbah tandan kosong kelapa sawit oleh masyarakat di Jorong Koto Sawah Nagari Ujung Gading Kecamatan Lembah Melintang. Jurnal Spasial, 3(2), 33–40.

Santoso, K. A. (2020). The effects of milk age on the titratable acidity of raw milk. International Journal of Science and Research, 9(7), 1041–1049.

Sharah, A., Karnila, R., & Desmelati. (2015). Pembuatan kurva pertumbuhan bakteri asam laktat yang di isolasi dari ikan peda kembung (Rastrelliger Sp.). Jurnal Online Mahasiswa Bidang Perikanan Dan Ilmu Kelautan, 2(2), 1–8.

Subagiyo, Margino, S., & Triyanto. (2015). Pengaruh penambahan berbagai jenis sumber karbon, nitrogen, dan fosfor pada medium de Man, Rogosa and Sharpe (MRS) terhadap pertumbuhan bakteri asam laktat terpilih yang diisolasi dari intestinum udang penaeid. Jurnal Kelautan Tropis, 18(3), 127–132.

Suhaeni. (2018). Uji total asam dan organoleptik yoghurt katuk. Jurnal Dinamika, 9(2), 21–28.

Suryanti, V., Handayani, D. S., Masykur, A., & Lindasari. (2017). Optimization production of biosurfactant by Pseudomonas putida using crude palm oil (CPO) as substrate. IOP Conference Series: Earth and Environmental Science, 75(1).

Susanto, J. P., Santoso, A. D., & Suwedi, N. (2017). Perhitungan potensi limbah padat kelapa sawit untuk sumber energi terbaharukan dengan metode LCA. Jurnal Teknologi Lingkungan, 18(2), 165–172.

Szentirmai, E., Massie, A., & Kapas, L. (2021). Lipoteichoic acid, a cell wall component of gam-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behavior and Immunity, 184–19292.

Tian, H., Shi, Y., Zhang, Y., Yu, H., Mu, H., & Chen, C. (2019). Screening of aroma-producing lactic acid bacteria and their application in improving the aromatic profile of yogurt. Journal of Food Biochemistry 43(10).

Ukalska, J., & Jastrzȩbowski, S. (2019). Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak. Folia Forestalia Polonica, Series A, 61(1), 30–41.

van Zwanenberg, P., & Millstone, E. (2015). Taste and power: The flavouring industry and flavour additive regulation. Science as Culture, 24(2), 129–156. 937686

Vandamme, E. J., & Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology and Biotechnology, 77(12), 1323–1332.

Verma, D. K., Al-Sahlany, S. T. G., Niamah, A. K., Thakur, M., Shah, N., Singh, S., Baranwal, D., Patel, A. R., Utama, G. L., & Aguilar, C. N. (2022). Recent trends in microbial flavour compounds: A review on chemistry, synthesis mechanism and their application in food. Saudi Journal of Biological Sciences, 29(3), 1565–1576.

Wang, Y., Wu, J., Lv, M., Saho, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristic of lactic acid bacteria and the expanding application in food industry. Frontiers in Bioengineering and Biotechnology, 9, 1–19.

Weerawatanakorn, M., Wu, J.-C., Pan, M.-H., & Ho, C.-T. (2015). Reactivity and stability of selected flavor compounds. Journal of Food and Drug Analysis, 23, 176–190.

Wijayanti, W., Mahfud, T., & Djati, B. (2015). Acceptance test oatmeal cookies dengan substitusi dedak padi. Teknobuga, 2(2), 9–17.

Ye, L., Hudari, M. S. B., Li, Z., & Wu, J. C. (2014). Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for L-lactic acid production by Bacillus Coagulans JI12. Biochemical Engineering Journal, 83, 16–21.

Zaini, N. A. B. M., Chatzifragkou, A., & Charalampopoulos, D. (2019). Microbial production of d‐lactic acid from dried distiller’s grains with solubles. Engineering in Life Sciences, 19, 30.

Zhang, L., Cao, Y., Tong, J., & Xu, Y. (2019). An alkylpyrazine synthesis mechanism involving l-threonine-3-dehydrogenase describes the production of 2,5-dimethylpyrazine and 2,3,5-trimethylpyrazine by Bacillus subtilis. Applied and Environmental Microbiology, 85(24), 1–49.

ZhiLei, Z., ZhiQiang, X., Shun, Z., Hua, W., FeiFei, X., Yue, L., & Fang, H. (2014). Formation and reaction pathway of caramel-like aroma compounds in solid state maillard model system of reducing sugars and proline. Food and Fermentation Industries, 40(1), 30–34.

Zhu, L.-X., Zhang, M.-M., Liu, Z., Shi, Y., & Duan, C.-Q. (2019). Levels of furaneol in Msalais wines: A comprehensive overview of multiple stages and pathways of its formation during Msalais winemaking. Molecules, 24(3104), 1–14.








How to Cite

Dimawarnita, F., Kusuma, A. S. S., Perwitasari, U., Zubaidah, E., Faramitha, Y., Religia, P., & Juanssilfero, A. B. (2024). Production and profiling bioflavor compound from fermentation OPEFB hydrolysate and CPO by Lactobacillus sp. Menara Perkebunan, 92(1).




Most read articles by the same author(s)

1 2 > >>