The impact of bio-silicic acid (BioSilAc) to increase productivity and water use efficiency in sugarcane

Authors

  • Indah Puspita Sari Indonesia Oil Pam Research Institute (IOPRI)
  • Donny Nugroho Kalbuadi Indonesia Oil Pam Research Institute (IOPRI)
  • Poppy Arisandy Indonesia Oil Pam Research Institute (IOPRI)
  • Yusuf Mahali Indonesian Sugar Research Institute
  • Habiburrahman Malik Al Hamda Indonesia Oil Pam Research Institute (IOPRI)
  • Didiek Hadjar Goenadi Indonesia Oil Pam Research Institute (IOPRI)

DOI:

https://doi.org/10.22302/iribb.jur.mp.v93i1.602

Keywords:

Biosilac, plant cane, ratoon cane, sap flow, water consumption

Abstract

Sugarcane (Saccharum officinarum L.) is a vital plantation crop, serving as a raw material for various industries, including sugar, bioethanol, amino acids, and food ingredients. Therefore, the advancement of technologies aimed at increasing productivity and fertilization efficiency in sugarcane cultivation has become a priority. Bio-silicic acid (BioSilAc) is a technology that can optimize the cultivation process. This study evaluated the effectiveness of water and fertilizer usage in plant cane (PC) and ratoon cane (RC) during low rainfall by applying BioSilAc and its impact on sugarcane productivity. This research utilized a randomized block design with three treatments (P1: 100% NPK; P2: 100% NPK + BioSilAc; and P3: 75% NPK + BioSilAc) replicated three times. Observed variables included soil and leaf nutrient levels, sugarcane growth, and productivity. Daily and potential water consumption was measured in real-time using a sap flow meter to calculate water use efficiency for P1 (control) and P2, representing the BioSilAc application. The P3 treatment (75% NPK + BioSilAc) demonstrated the highest effectiveness in terms of fertilization efficiency and productivity, resulting in notable increases in crop yield and crystal sugar. The PC category saw increases of 13.5% and 12.4%, while the RC category experienced gains of 22.82% and 25.81%, respectively. Furthermore, water use efficiency was recorded at 22.55% for the PC category and 13.72% for the RC category. Our findings suggest that the application of BioSilAc not only increase the productivity of sugarcane but also improves both fertilizer and water use efficiency.

Downloads

Download data is not yet available.

References

Ali, N., Rethore, E., Yvin, J. C., & Hosseini, S.A. (2020) The regulatory role of silicon in

mitigating plant nutritional stresses. Plants, (9), 1-18. https://doi.org/10.3390/plants9121779

Amanah, D., Haris, M. N., & Santi, L. P. (2019). Physiological responses of bio-silica-treated oil palm seedlings to drought stress. Menara Perkebunan, 87 (1), 20-30. https://doi.org/10.22302/iribb.jur.mp.v87i1.306

Bezerra, B.K.L., Lima, G.P.P., dos Reis, A.R., Silva, M., de, A., & de Camargo, M.S. (2019). Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiologiae Plantarum, (41), 1–12. https://doi.org/10.1007/s11738-019-2980-0

Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, (74), 165–175. https://doi.org/10.1016/j.plaphy.2013.11.016

Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, (35), 401-442. https://doi.org/10.1007/s13593-015-0283-4

Camargo, M.S., Bezerra, B.K.L. , Holanda, L.A., Oliveira, A.L. Vitti, A.C., & Silva, M.A. (2019). Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. Journal of Soil Science and Plant Nutrition, (19), 81-91. https://doi.org/10.1007/s42729-019-0012-1

Camargo, M.S., Bezerra, B.K.L., Vitti, A.C., Silva, M.A., & Oliveira, A.L. (2017). Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. Journal of Soil Science and Plant Nutrition, (17) 99-111. 10.4067/S0718-95162017005000008

Camargo, M.S., Korndörfer, G.H., Foltran, D.E., Henrique, C.M., & Rossetto, R. (2010). Silicon uptake, yield and Diatraea saccharalis incidence in sugarcane cultivars. Bragantia, 69:937–944. 10.1590/S0006-87052010000400020

Chen, D., Wang, S., Yin, L., & Deng, X. (2018) How does silicon mediate plant water

uptake and loss under water deficiency. Frontiers in Plant Science, (9), 281. 10.3389/fpls.2018.00281

Condon, A.G., Richards, R.A., Rebetzke, G.J., & Farquhar, G.D. (2002). . Improving intrinsic water-use efficiency and crop yield. Crop Science, (42), 122-131. https://doi.org/10.2135/cropsci2002.1220

Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., & Bélanger, R. R. (2019). The controversies of silicon’s role in plant biology. New Phytologist, (221), 67–85. 10.1111/nph.15343

De Silva, M.A., Jifon, J.L., Santos, C.M.D., Jadoski, C.J., & Da Silva, J.A.G. (2013) Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Brazilian Archives of Biololy and Technology, (56), 735–748. https://doi.org/10.1590/S1516-89132013000500004

Etasama, H. & Jeong, B. R. (2018). Silicon (Si): Review and future prospect on the action mechanism in alleviating biotic and abiotic stresses in plant. Ecotoxicol Environ Safety, 147, 881-896. 10.1016/j.ecoenv.2017.09.063

Ferreira, T.H.S., Tsunada, M.S., Bassi, D., Araujo, P., Mattiello, L., Guidelli, G.V., Righetto, G.L., VGoncalves, R., Lakshmanan, P., & Menossi, M. (2017). Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontoers in Plant Science, (8), 1–18. https://doi.org/10.3389/fpls.2017.01077

Frew, A., Weston, L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany, (121) 1265–1273. 10.1093/aob/mcy009

Guerriero, G., Hausman, J. F., & Legay, S. (2016), Silicon and the plant extracellular matrix. Frontiers in Plant Science, (7), 463. 10.3389/fpls.2016.00463

Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxová, M., & Sugimoto, Y. (2003). Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiology, (44), 743–749. 10.1093/pcp/pcg090

Hoang, D.T., Hiroo, T., & Yoshinobu, K. (2019). Nitrogen use efficiency and drought tolerant ability of various sugarcane varieties under drought stress at early growth stage. Plant Production Science, (22) 250-261. https://doi.org/10.1080/1343943X.2018.1540277

Jaiphong, T., Tominaga, J., Watanabe, K., Nakabaru, M., Takaragawa, H., Suwa, R., Ueno, M., & Kawamitsu, Y. (2016). Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science, (19), 427–437. https://doi.org/10.1080/1343943X.2016.1275711

Khonghintaisong, J., Onkaeo, A., Songsari, P., & Jongrungklang, N. (2024). Water use efficiency characteristics and their contributions to yield in diverse sugarcane genotypes with varying drought resistance levels under different field irrigation conditions. Agriculture, 14(11), 1952. https://doi.org/10.3390/agriculture14111952

Khonghintaisong, J., Songsri, P., Toomsan, B., & Jongrungklang, N. (2018). Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech, (20), 396–406. 10.1007/s12355-017-0564-0

Liu, J., Basnayake, J., Jackson, P.A., Chen, X., Zhao, J., Zhao, P., Yang, L., Bai, Y., Xia, H., Zan, F., Qin, W., Yang, K., Yao, L., Zhao, L., Zhu, J., Lakshmanan, P., Zhao, X., & Fan, Y. (2016). Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Field Crops Research, (196), 418–425. https://doi.org/10.1016/j.fcr.2016.07.022

Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: currenct knowledge and technological perspective. Frontiers in Plant Science, (8), 441. 10.1093/jxb/eru220

Marchiori, P.E.R. , Machado, E.C., Sales, C.R.G., Espinoza-Núñez, E. , Magalhães J.R. , Filho, G.M., Souza, R.C.M., Pires, R.V., & Ribeiro. (2017). Physiological plasticity is important for maintaining sugarcane growth under water deficit. Frontiers in Plant Science, (8). 10.3389/fpls.2017.02148

Mitani-Ueno, N. & Ma, J. F. (2021). Linking transport system of silicon with its accumulation in different plant species. Soil Science and Plant Nutrition, (67), 10-17. https://doi.org/10.1080/00380768.2020.1845972

Natarjan, S., Basnayake, J., Lakshmanan, P., & Fukai, S. (2020). Genotypic variation in intrinsic transpiration efficiency correlates with sugarcane yield under rainfed and irrigated field conditions. Physiologia Plantarum, (172), 976-989. https://doi.org/10.1111/ppl.13221

Pascual, M. B., Echevarria, V., Gonzalo, M. J., Hernández, & Apaolaza, L. (2016). Silicon addition to soybean (Glycine max L.) plants alleviate zinc deficiency. Plant Physiology and Biochemistry, (108) 132-138. https://doi.org/10.1016/j.plaphy.2016.07.008

Puspitasari, A.R., & Yuliatun, S. (2023). Pertumbuhan dan produksi tebu varietas PSJK 922 pasca aplikasi pupuk silikat (BioSilAc dan SiAbate). Indonesia Sugar Research Journal, 3(2), 56-63. https://doi.org/10.54256/isrj.v3i2.110

Reyes, J.A.O., Casas, D.E., Gandia, J.L., & Delfin, E.F. (2021). Drought impact on sugarcane production. In Agricultural Research Updates; Gorawala, P., Mandhatri, S. Nova Science Publishers, Inc: Volume 35, pp. 53–93.

Rios, J.J., Martínez-Ballesta, M.C., Ruiz, J.M., Blasco, B., & Carvajal, M. (2017). Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, (8), 948. 10.3389/fpls.2017.00948

Sahebi, M. , Hanafi M.M, , Akmar, A.S.N., Rafii, M.Y., Azizi, P., Tengoua F.F., Azwa, J.N.M., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research Internasional. Article ID 396010, 16 pages. 10.1155/2015/396010

Santi, L. P., & Goenadi, D. H. (2017). Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan, 85 (2), 95-104. https://doi.org/10.22302/iribb.jur.mp.v85i2.247

Santi, L. P., Goenadi, D. H., Barus, J., Dariah, A, & Kalbuadi, D. N. (2019). Effects of bio-nano OSA application on fertilizer use and water consumption efficiencies of black soybean grown on rice-field. Jurnal Tanah dan Iklim, 43 (2), 105-112. https://doi.org/10.21082/jti.v43n2.2019.109-116

Santos-Cividanes, Terezinha, M., Cividanes, F.J., Vilela, M., & Garcia, J.C. (2022). Silicon induces resistance to Diatraea saccharalis in sugarcane, and it is compatible with the biological control agent Cotesia flavipes. Journal of Pest Science, 95(4). 10.1007/s10340-021-01429-5eeesacgfrjc

Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., & Gong, H. (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontier in Plant Science, (7) 196. 10.3389/fpls.2016.00196

Soundararajan, P., Manivannan, A., Cho, Y.S., & Jeong, B.R. (2017). Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Frontiers in Plant Science (8), 738. 10.3389/fpls.2017.00738

Teixeira, G.C.M., de Prado, R.M., Rocha, A.M.S., de Oliveira, Filho, A.S.B., da Sousa, Junior, G., S., & Gratao, P.L. (2022). Action of silicon on the activity of antioxidant enzymes and on physiological mechanisms mitigates water deficit in sugarcane and energy cane plant. Scientific Repotrs, (12), 17487. https://doi.org/10.1038/s41598-022-10615-z

Teixeira, G.C.M. , de Prado, R.D.M. , Rocha, A.M.S. , dos Santos, L.C.N., & Sarah, M.M.S., Gratão, P.L. , Fernandes, C. (2020). Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. Journal of Soil Science and Plant Nutrition, (20), 849-859. https://doi.org/10.1007/s42729-019-00170-4

Toharisman, A. & Triantari (2016). An overview of the sugar sector in Indonesia. Sugar Tech, (18), 636-641. https://doi.org/10.1007/s12355-016-0490-6

Uddin, J., Smith, R., Hancock, N., & Foley, J. (2014) Evaluation of sap flow sensors to

measure the transpiration rate of plants during canopy wetting and drying. Journal

of Agricultural Studies, 2(2), 119-205. http://dx.doi.org/10.5296/jas.v2i2.6134

Verma, K. K., Singh, P., Song, X. P., Malviya, M. K., Singh, R.K., Chen, G.L., Solomon, S., & Li, Y. R. (2020). Mitigating climate change for sugarcane improvement: role of silicon in alleviating abiotic stresses. Sugar Tech, (22), 741-749. https://doi.org/10.1007/s12355-020-00831-0

Verma, K. K., Song, X.P., Lin, B., Guo, D. J., Singh, M., Rajput, V. D., Singh, R. K., Singh, P., Sharma, A., Malviya, M. K., Chen, G. L., & Li, Y. R. (2021) Silicon induced drought tolerance in crop plants: physiological adaptation strategies. Springer Nature, (14) 2473-2487. https://doi.org/10.1007/s12633-021-01071-x

Verma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., Malviya, M. K., Wei, K. J., Sharma, A., Li, D. P., Chen, G. L., & Li, Y. R. (2021) Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response, and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, (166), 582-592. https://doi.org/10.1016/j.plaphy.2021.06.032

Verma, K. K., Wu, K. C., Singh, P., Malviya, M. K., Singh, R. K., Song, X. P., & Li, Y. R. (2019) The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomedical Journal Scientific & Technical Research, 15(2). 10.26717/BJSTR.2019.15.002685

Wang, S., Liu, P., Chen, D., Yin, L., Li, H., & Deng, X. (2015). Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontier in. Plant Science, (9) 281. 10.3389/fpls.2018.00281

Xu, C. X., Ma, Y. P., & Liu, Y. L. (2015). Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal of Botany, (98), 26-36. https://doi.org/10.1016/j.sajb.2015.01.008

Zeng, Q., Ling, Q., Fan, L., Li, Y., Hu, F., Chen, J., Huang, Z., Deng, H., Li, Q., & Qi, Y. (2015) Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS One, 10 (5): e0126306. 10.1371/journal.pone.0126306

Zhao, D. & Li, Y. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, (2), 1–10. https://doi.org/10.1155/2015/547386

Downloads

Submitted

16-12-2024

Accepted

30-04-2025

Published

30-04-2025

How to Cite

Sari, I. P., Kalbuadi, D. N., Arisandy, P., Mahali, Y., Al Hamda, H. M., & Goenadi, D. H. (2025). The impact of bio-silicic acid (BioSilAc) to increase productivity and water use efficiency in sugarcane. Menara Perkebunan, 93(1), 31–38. https://doi.org/10.22302/iribb.jur.mp.v93i1.602

Most read articles by the same author(s)

1 2 > >>