The impact of bio-silicic acid (BioSilAc) to increase productivity and water use efficiency in sugarcane
DOI:
https://doi.org/10.22302/iribb.jur.mp.v93i1.602Keywords:
Biosilac, plant cane, ratoon cane, sap flow, water consumptionAbstract
Sugarcane (Saccharum officinarum L.) is a vital plantation crop, serving as a raw material for various industries, including sugar, bioethanol, amino acids, and food ingredients. Therefore, the advancement of technologies aimed at increasing productivity and fertilization efficiency in sugarcane cultivation has become a priority. Bio-silicic acid (BioSilAc) is a technology that can optimize the cultivation process. This study evaluated the effectiveness of water and fertilizer usage in plant cane (PC) and ratoon cane (RC) during low rainfall by applying BioSilAc and its impact on sugarcane productivity. This research utilized a randomized block design with three treatments (P1: 100% NPK; P2: 100% NPK + BioSilAc; and P3: 75% NPK + BioSilAc) replicated three times. Observed variables included soil and leaf nutrient levels, sugarcane growth, and productivity. Daily and potential water consumption was measured in real-time using a sap flow meter to calculate water use efficiency for P1 (control) and P2, representing the BioSilAc application. The P3 treatment (75% NPK + BioSilAc) demonstrated the highest effectiveness in terms of fertilization efficiency and productivity, resulting in notable increases in crop yield and crystal sugar. The PC category saw increases of 13.5% and 12.4%, while the RC category experienced gains of 22.82% and 25.81%, respectively. Furthermore, water use efficiency was recorded at 22.55% for the PC category and 13.72% for the RC category. Our findings suggest that the application of BioSilAc not only increase the productivity of sugarcane but also improves both fertilizer and water use efficiency.
Downloads
References
Ali, N., Rethore, E., Yvin, J. C., & Hosseini, S.A. (2020) The regulatory role of silicon in
mitigating plant nutritional stresses. Plants, (9), 1-18. https://doi.org/10.3390/plants9121779
Amanah, D., Haris, M. N., & Santi, L. P. (2019). Physiological responses of bio-silica-treated oil palm seedlings to drought stress. Menara Perkebunan, 87 (1), 20-30. https://doi.org/10.22302/iribb.jur.mp.v87i1.306
Bezerra, B.K.L., Lima, G.P.P., dos Reis, A.R., Silva, M., de, A., & de Camargo, M.S. (2019). Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiologiae Plantarum, (41), 1–12. https://doi.org/10.1007/s11738-019-2980-0
Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, (74), 165–175. https://doi.org/10.1016/j.plaphy.2013.11.016
Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, (35), 401-442. https://doi.org/10.1007/s13593-015-0283-4
Camargo, M.S., Bezerra, B.K.L. , Holanda, L.A., Oliveira, A.L. Vitti, A.C., & Silva, M.A. (2019). Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. Journal of Soil Science and Plant Nutrition, (19), 81-91. https://doi.org/10.1007/s42729-019-0012-1
Camargo, M.S., Bezerra, B.K.L., Vitti, A.C., Silva, M.A., & Oliveira, A.L. (2017). Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. Journal of Soil Science and Plant Nutrition, (17) 99-111. 10.4067/S0718-95162017005000008
Camargo, M.S., Korndörfer, G.H., Foltran, D.E., Henrique, C.M., & Rossetto, R. (2010). Silicon uptake, yield and Diatraea saccharalis incidence in sugarcane cultivars. Bragantia, 69:937–944. 10.1590/S0006-87052010000400020
Chen, D., Wang, S., Yin, L., & Deng, X. (2018) How does silicon mediate plant water
uptake and loss under water deficiency. Frontiers in Plant Science, (9), 281. 10.3389/fpls.2018.00281
Condon, A.G., Richards, R.A., Rebetzke, G.J., & Farquhar, G.D. (2002). . Improving intrinsic water-use efficiency and crop yield. Crop Science, (42), 122-131. https://doi.org/10.2135/cropsci2002.1220
Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., & Bélanger, R. R. (2019). The controversies of silicon’s role in plant biology. New Phytologist, (221), 67–85. 10.1111/nph.15343
De Silva, M.A., Jifon, J.L., Santos, C.M.D., Jadoski, C.J., & Da Silva, J.A.G. (2013) Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Brazilian Archives of Biololy and Technology, (56), 735–748. https://doi.org/10.1590/S1516-89132013000500004
Etasama, H. & Jeong, B. R. (2018). Silicon (Si): Review and future prospect on the action mechanism in alleviating biotic and abiotic stresses in plant. Ecotoxicol Environ Safety, 147, 881-896. 10.1016/j.ecoenv.2017.09.063
Ferreira, T.H.S., Tsunada, M.S., Bassi, D., Araujo, P., Mattiello, L., Guidelli, G.V., Righetto, G.L., VGoncalves, R., Lakshmanan, P., & Menossi, M. (2017). Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontoers in Plant Science, (8), 1–18. https://doi.org/10.3389/fpls.2017.01077
Frew, A., Weston, L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany, (121) 1265–1273. 10.1093/aob/mcy009
Guerriero, G., Hausman, J. F., & Legay, S. (2016), Silicon and the plant extracellular matrix. Frontiers in Plant Science, (7), 463. 10.3389/fpls.2016.00463
Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxová, M., & Sugimoto, Y. (2003). Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiology, (44), 743–749. 10.1093/pcp/pcg090
Hoang, D.T., Hiroo, T., & Yoshinobu, K. (2019). Nitrogen use efficiency and drought tolerant ability of various sugarcane varieties under drought stress at early growth stage. Plant Production Science, (22) 250-261. https://doi.org/10.1080/1343943X.2018.1540277
Jaiphong, T., Tominaga, J., Watanabe, K., Nakabaru, M., Takaragawa, H., Suwa, R., Ueno, M., & Kawamitsu, Y. (2016). Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science, (19), 427–437. https://doi.org/10.1080/1343943X.2016.1275711
Khonghintaisong, J., Onkaeo, A., Songsari, P., & Jongrungklang, N. (2024). Water use efficiency characteristics and their contributions to yield in diverse sugarcane genotypes with varying drought resistance levels under different field irrigation conditions. Agriculture, 14(11), 1952. https://doi.org/10.3390/agriculture14111952
Khonghintaisong, J., Songsri, P., Toomsan, B., & Jongrungklang, N. (2018). Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech, (20), 396–406. 10.1007/s12355-017-0564-0
Liu, J., Basnayake, J., Jackson, P.A., Chen, X., Zhao, J., Zhao, P., Yang, L., Bai, Y., Xia, H., Zan, F., Qin, W., Yang, K., Yao, L., Zhao, L., Zhu, J., Lakshmanan, P., Zhao, X., & Fan, Y. (2016). Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Field Crops Research, (196), 418–425. https://doi.org/10.1016/j.fcr.2016.07.022
Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: currenct knowledge and technological perspective. Frontiers in Plant Science, (8), 441. 10.1093/jxb/eru220
Marchiori, P.E.R. , Machado, E.C., Sales, C.R.G., Espinoza-Núñez, E. , Magalhães J.R. , Filho, G.M., Souza, R.C.M., Pires, R.V., & Ribeiro. (2017). Physiological plasticity is important for maintaining sugarcane growth under water deficit. Frontiers in Plant Science, (8). 10.3389/fpls.2017.02148
Mitani-Ueno, N. & Ma, J. F. (2021). Linking transport system of silicon with its accumulation in different plant species. Soil Science and Plant Nutrition, (67), 10-17. https://doi.org/10.1080/00380768.2020.1845972
Natarjan, S., Basnayake, J., Lakshmanan, P., & Fukai, S. (2020). Genotypic variation in intrinsic transpiration efficiency correlates with sugarcane yield under rainfed and irrigated field conditions. Physiologia Plantarum, (172), 976-989. https://doi.org/10.1111/ppl.13221
Pascual, M. B., Echevarria, V., Gonzalo, M. J., Hernández, & Apaolaza, L. (2016). Silicon addition to soybean (Glycine max L.) plants alleviate zinc deficiency. Plant Physiology and Biochemistry, (108) 132-138. https://doi.org/10.1016/j.plaphy.2016.07.008
Puspitasari, A.R., & Yuliatun, S. (2023). Pertumbuhan dan produksi tebu varietas PSJK 922 pasca aplikasi pupuk silikat (BioSilAc dan SiAbate). Indonesia Sugar Research Journal, 3(2), 56-63. https://doi.org/10.54256/isrj.v3i2.110
Reyes, J.A.O., Casas, D.E., Gandia, J.L., & Delfin, E.F. (2021). Drought impact on sugarcane production. In Agricultural Research Updates; Gorawala, P., Mandhatri, S. Nova Science Publishers, Inc: Volume 35, pp. 53–93.
Rios, J.J., Martínez-Ballesta, M.C., Ruiz, J.M., Blasco, B., & Carvajal, M. (2017). Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, (8), 948. 10.3389/fpls.2017.00948
Sahebi, M. , Hanafi M.M, , Akmar, A.S.N., Rafii, M.Y., Azizi, P., Tengoua F.F., Azwa, J.N.M., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research Internasional. Article ID 396010, 16 pages. 10.1155/2015/396010
Santi, L. P., & Goenadi, D. H. (2017). Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan, 85 (2), 95-104. https://doi.org/10.22302/iribb.jur.mp.v85i2.247
Santi, L. P., Goenadi, D. H., Barus, J., Dariah, A, & Kalbuadi, D. N. (2019). Effects of bio-nano OSA application on fertilizer use and water consumption efficiencies of black soybean grown on rice-field. Jurnal Tanah dan Iklim, 43 (2), 105-112. https://doi.org/10.21082/jti.v43n2.2019.109-116
Santos-Cividanes, Terezinha, M., Cividanes, F.J., Vilela, M., & Garcia, J.C. (2022). Silicon induces resistance to Diatraea saccharalis in sugarcane, and it is compatible with the biological control agent Cotesia flavipes. Journal of Pest Science, 95(4). 10.1007/s10340-021-01429-5eeesacgfrjc
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., & Gong, H. (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontier in Plant Science, (7) 196. 10.3389/fpls.2016.00196
Soundararajan, P., Manivannan, A., Cho, Y.S., & Jeong, B.R. (2017). Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Frontiers in Plant Science (8), 738. 10.3389/fpls.2017.00738
Teixeira, G.C.M., de Prado, R.M., Rocha, A.M.S., de Oliveira, Filho, A.S.B., da Sousa, Junior, G., S., & Gratao, P.L. (2022). Action of silicon on the activity of antioxidant enzymes and on physiological mechanisms mitigates water deficit in sugarcane and energy cane plant. Scientific Repotrs, (12), 17487. https://doi.org/10.1038/s41598-022-10615-z
Teixeira, G.C.M. , de Prado, R.D.M. , Rocha, A.M.S. , dos Santos, L.C.N., & Sarah, M.M.S., Gratão, P.L. , Fernandes, C. (2020). Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. Journal of Soil Science and Plant Nutrition, (20), 849-859. https://doi.org/10.1007/s42729-019-00170-4
Toharisman, A. & Triantari (2016). An overview of the sugar sector in Indonesia. Sugar Tech, (18), 636-641. https://doi.org/10.1007/s12355-016-0490-6
Uddin, J., Smith, R., Hancock, N., & Foley, J. (2014) Evaluation of sap flow sensors to
measure the transpiration rate of plants during canopy wetting and drying. Journal
of Agricultural Studies, 2(2), 119-205. http://dx.doi.org/10.5296/jas.v2i2.6134
Verma, K. K., Singh, P., Song, X. P., Malviya, M. K., Singh, R.K., Chen, G.L., Solomon, S., & Li, Y. R. (2020). Mitigating climate change for sugarcane improvement: role of silicon in alleviating abiotic stresses. Sugar Tech, (22), 741-749. https://doi.org/10.1007/s12355-020-00831-0
Verma, K. K., Song, X.P., Lin, B., Guo, D. J., Singh, M., Rajput, V. D., Singh, R. K., Singh, P., Sharma, A., Malviya, M. K., Chen, G. L., & Li, Y. R. (2021) Silicon induced drought tolerance in crop plants: physiological adaptation strategies. Springer Nature, (14) 2473-2487. https://doi.org/10.1007/s12633-021-01071-x
Verma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., Malviya, M. K., Wei, K. J., Sharma, A., Li, D. P., Chen, G. L., & Li, Y. R. (2021) Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response, and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, (166), 582-592. https://doi.org/10.1016/j.plaphy.2021.06.032
Verma, K. K., Wu, K. C., Singh, P., Malviya, M. K., Singh, R. K., Song, X. P., & Li, Y. R. (2019) The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomedical Journal Scientific & Technical Research, 15(2). 10.26717/BJSTR.2019.15.002685
Wang, S., Liu, P., Chen, D., Yin, L., Li, H., & Deng, X. (2015). Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontier in. Plant Science, (9) 281. 10.3389/fpls.2018.00281
Xu, C. X., Ma, Y. P., & Liu, Y. L. (2015). Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal of Botany, (98), 26-36. https://doi.org/10.1016/j.sajb.2015.01.008
Zeng, Q., Ling, Q., Fan, L., Li, Y., Hu, F., Chen, J., Huang, Z., Deng, H., Li, Q., & Qi, Y. (2015) Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS One, 10 (5): e0126306. 10.1371/journal.pone.0126306
Zhao, D. & Li, Y. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, (2), 1–10. https://doi.org/10.1155/2015/547386
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indah Puspita Sari, Donny Nugroho Kalbuadi, Poppy Arisandy, Yusuf Mahali, Habiburrahman Malik Al Hamda, Didiek Hadjar Goenadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.