Sintesis, karakterisasi, dan pengujian aktifitas antifungi nanopartikel perak – cysteine secara in vitro terhadap Ganoderma boninense

Authors

  • Yora FARAMITHA Indonesia Research Institute for Biotechnology and Bioindustry
  • Firda DIMAWARNITA Indonesia Research Institute for Biotechnology and Bioindustry
  • Haryo Tejo PRAKOSO
  • Siswanto SISWANTO

DOI:

https://doi.org/10.22302/iribb.jur.mp.v90i2.501

Keywords:

maximum absorbance, Cys-AgNPs, mycelial inhibition, stability of nanoparticles

Abstract

The application of silver nanoparticles as antifungal in the plantation sector is very potential to be developed. Silver nanoparticles conjugated with cysteine have the advantage of having low toxicity, making them safer for the environment. Until now, basal stem rot disease caused by apathogenic fungusGanoderma boninense, has become a serious problem and causes economic losses in oil palm plantations. Studies related to the effect of silver nanoparticles on the control of G. boninense have not been widely studied. Therefore, the objectives of this research are to evaluate the stability of silver nanoparticles conjugated with L-cysteine (Cys-AgNPs) and to examine Cys-AgNPs ability in inhibiting the mycelial growth of G. boninense. Cysteine-silver nanoparticles were characterized using UV-Vis, particle size analyzer (PSA), and Fourier Transform Infrared (FTIR). The assay of Cys-AgNPs activity as an antifungal against G. boninense was carried out in vitro. As a result, cysteine-silver nanoparticles were successfully synthesized by producing a brownish-yellow color and maximum localized surface plasmon resonance (LSPR) absorbance in the range of 402 nm. There was an effect of L-cysteine concentration on the stability of Cys-AgNPs. The use of 0.01 M L-cysteine concentration resulted in Cys-AgNPs that were more stable and smaller in particle size than 0.001 M L-cysteine. Silver-cysteine nanoparticles could inhibit the growth of G. boninense mycelia, with a highest percentage of mycelia inhibition observed from the application of Cys-AgNPs at 8 mg L-1 on day 6 (65,17%). 

 

Abstrak

Aplikasi nanopartikel perak sebagai antifungi di bidang perkebunan sangat potensial untuk dikembangkan. Nanopartikel perak yang dikonjugasi dengan L-cysteine memiliki keunggulan yaitu sifat toksisitas yang rendah sehingga lebih aman untuk lingkungan. Hingga saat ini, penyakit busuk pangkal batang pada perkebunan kelapa sawit yang disebabkan oleh cendawan patogen Ganoderma boninense masih menjadi permasalahan yang serius dan menyebabkan kerugian secara ekonomi. Studi terkait pengaruh nanopartikel perak terhadap pengendalian G. boninense masih belum banyak dikaji. Oleh karena itu, penelitian ini bertujuan untuk mengevaluasi stabilitas nanopartikel perak yang dikonjugasikan dengan L-cysteine (Cys-AgNPs) dan menguji kemampuannya dalam menghambat pertumbuhan miselia G. boninense. Nanopartikel perak-cysteine dikarakterisasi menggunakan UV-Visparticle size analyzer (PSA), dan Fourier Transform Infrared (FTIR). Uji aktivitas Cys-AgNPs sebagai antifungi terhadap G. boninense dilakukan secara in vitro.  Sebagai hasil, nanopartikel perak-cysteine berhasil disintesis dengan menghasilkan warna kuning kecoklatan dan absorbansi localized surface plasmon resonance (LSPR) maksimum pada kisaran 402 nm. Terdapat pengaruh konsentrasi L-cysteine terhadap stabilitas Cys-AgNPs. Penggunaan konsentrasi L-cysteine 0,01 M menghasilkan Cys-AgNPs yang lebih stabil dan ukuran partikel yang lebih kecil dibanding L-cysteine 0,001 M. Nanopartikel perak-cysteine mampu menghambat pertumbuhan miselia G. boninense dengan persentase penghambatan miselia tertinggi diamati dari aplikasi Cys-AgNPs optimum sebesa 8 mg L-1 pada hari ke-6 (65,17%).

Downloads

Download data is not yet available.

Author Biographies

Haryo Tejo PRAKOSO

Indonesia Research Institute for Biotechnology and Bioindustry

Siswanto SISWANTO

Indonesia Research Institute for Biotechnology and Bioindustry

References

Avila-Quezada GD, P Golinska & M Rai (2021). Engineered nanomaterials in plant diseases: can we combat phytopathogens?. Applied Microbiology and Biotechnology, 1-13. DOI: 10.1007/s00253-022-11765-w

Jian Y, X Chen, T Ahmed, Q Shang, S Zhang, Z Ma & Y Yin (2022). Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. Journal of advanced research 38, 1-12. DOI: 10.1016/j.jare.2021.09.006

Khalkho BR, R Kurrey, MK Deb, K Shrivas, SS Thakur, S Pervez & VK Jain (2020). L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon 6(2), e03423.

Kumar A, A Choudhary, H Kaur, S Guha, S Mehta & A Husen (2022). Potential applications of engineered nanoparticles in plant disease management: a critical update. Chemosphere, 295, 133798. DOI: 10.1016/j.chemosphere.2022.133798

Le VT, LG Bach, TT Pham, NTT Le, UTP Ngoc, DHN Tran & DH Nguyen (2019). Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. Journal of Macromolecular Science, Part A, 56(6), 522-528. DOI: 10.1080/10601325.2019.1586439

Liang W, A Yu, G Wang, F Zheng, J Jia & H Xu (2018). Chitosan-based nanoparticles of avermectin to control pine wood nematodes. International journal of biological macromolecules, 112, 258-263. DOI: 10.1016/j.ijbiomac.2018.01.174

Maluin FN, MZ Hussein, NA Yusof, S Fakurazi, AS Idris, NHZ Hilmi & LDJ Daim (2019). Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules, 24(13), 2498. DOI: 10.3390/molecules24132498

Martin AA, EK Fodjo, GBI Marc, T Albert & C Kong (2021). Simple and rapid detection of free 3-monochloropropane-1, 2-diol based on cysteine modified silver nanoparticles. Food Chemistry 338, 127787.

Mavani K & M Shah (2013). Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. International Journal of Engineering Research & Technology 2(3), 1-5.

Mulfinger L, SD Solomon, M Bahadory, AV Jeyarajasingam, SA Rutkowsky & C Boritz (2007). Synthesis and study of silver nanoparticles. Journal of chemical education 84(2), 322.

Mustafa IF, MZ Hussein, B Saifullah, AS Idris, NHZ Hilmi & S Fakurazi (2018). Synthesis of (hexaconazole-zinc/aluminum-layered double hydroxide nanocomposite) fungicide nanodelivery system for controlling Ganoderma disease in oil palm. Journal of agricultural and food chemistry, 66(4), 806-813. DOI: 10.1021/acs.jafc.7b04222

Pinto RJ, A Almeida, SC Fernandes, CS Freire, AJ Silvestre, CP Neto & T Trindade (2013). Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 103, 143-148. DOI: 10.1016/j.colsurfb.2012.09.045

Raimondi F, GG Scherer, R Kötz & A Wokaun (2005). Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angewandte Chemie International Edition, 44(15), 2190-2209. DOI: 10.1002/anie.200460466

Ravindran A, SP Dhas, N Chandrasekaran & A Mukherjee (2013). Differential interaction of silver nanoparticles with cysteine. Journal of Experimental Nanoscience 8(4), 589-595.

Rubina MS, AY Vasil’kov, AV Naumkin, EV Shtykova, SS Abramchuk, MA Alghuthaymi & KA Abd-Elsalam (2017). Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. Journal of Nanostructure in Chemistry, 7(3), 249-258.

Sahebi M, MM Hanafi, MY Wong, AS Idris, P Azizi, MF Jahromi & H Mohidin (2015). Towards immunity of oil palm against Ganoderma fungus infection. Acta Physiologiae Plantarum, 37(10), 1-16. DOI: 10.1007/s11738-015-1939-z.

Sahraee S, JM Milani, B Ghanbarzadeh & H Hamishehkar (2017). Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International journal of biological macromolecules, 97, 373-381. DOI: 10.1016/j.ijbiomac.2016.12.066

Sarkar S, A Mukhopadhyay & A Kundu (2021). Application of Nanocomposite Based Fungicides in Agriculture. Agriculture & Food: e-Newsletter, 3, 494-496.

Satish S, DC Mohana, MP Ranhavendra & KA Raveesha (2007). Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. Journal of Agricultural technology 3(1), 109-119.

Tripathi DK, A Tripathi, S Singh, Y Singh, K Vishwakarma, G Yadav & DK Chauhan (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in microbiology, 8, 07. DOI: 10.3389/fmicb.2017.00007

Wang X, A Cai, X Wen, D Jing, H Qi & H Yuan (2017). Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Science China Materials, 60(3), 258-268. DOI: 10.1007/s40843-016-9005-9

Downloads

Submitted

13-07-2022

Accepted

30-09-2022

Published

31-10-2022

How to Cite

FARAMITHA, Y., DIMAWARNITA, F., PRAKOSO, H. T., & SISWANTO, S. (2022). Sintesis, karakterisasi, dan pengujian aktifitas antifungi nanopartikel perak – cysteine secara in vitro terhadap Ganoderma boninense. Menara Perkebunan, 90(2). https://doi.org/10.22302/iribb.jur.mp.v90i2.501

Most read articles by the same author(s)

<< < 1 2 3