Formulasi bioinsektisida Bacillus thuringiensis isolat indigenos untuk pengendalian Hyposidra talaca pada tanaman teh (Formulation of indigenous isolate of Bacillus thuringiensis bioinsecticide to control Hyposidra talaca on tea)

Authors

  • Happy WIDIASTUTI Indonesian Research Institute for Biotechnology and Bioindustry
  • TRI - PANJI Indonesian Research Institute for Biotechnology and Bioindustry
  • Ciptadi Achmad YUSUP Indonesian Research Institute for Biotechnology and Bioindustry http://orcid.org/0000-0003-0846-8751
  • Iman RUSMANA Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
  • Tri Eko WAHYONO Pusat Penelitian dan Pengembangan Perkebunan

DOI:

https://doi.org/10.22302/iribb.jur.mp.v87i1.329

Keywords:

Bioinsektisida Bt, pengendalian hama terpadu, sipermetrin, ulat jengkal teh

Abstract

A study has been conducted to develop indigenousBacillusthuringiensisbioinsecticide. Preliminary study has been conducted to explore B. thuringiensisfrom sample of soil, leaf, and infected larvae from selected tea area as well as another area such as cocoa, and acasia. The result showed that based on the colony morphology, it was found 10 isolateswith the characteristics of B. thuringiensis colony.  Assessed of the ability to formed crystal using phase contrast microscope and staining revealed that 4 isolates as crystal protein forming isolates. The four isolates used as active coumpound of bioinsecticide. The best formula based on the viability of bacteria was the one withwhite clay as carrier. While the best liquid formula based on the similar characteristic was using maltosa as osmoprotectant. Theassessment ofthetoxisity B. thuringiensistowards Hyposidra talacalarvae showed that B. thuringiensiscould control H. talacalarvaeup to 37.5%. However, the toxicity need longer periode compared to that commercial B. thuringiensisbioinsecticide. 

[Keywords:Bt insecticidecypermethrine, integrated pest management, Tea looper].

Abstrak

Penelitian telah dilakukan untuk mengembangkan bioinsektisida berbahan aktif B. thuringiensisdari isolat asli Indonesia. Eksplorasi B. thuringiensisdari contoh berupa tanah, daun, dan ulat dari kebun teh telah dilakukan demikian pula dari habitat lain seperti kebun kakao dan akasia.  Berdasarkan morfologi koloni diperoleh 10 isolat yang menunjukkan ciri-ciri koloni B. thuringiensis. Selanjutnyaisolat yang diperoleh diuji kemampuan pembentukan kristal protein dengan pewarnaan dan pengamatan mikroskop phase kontras dan menghasilkan 4 isolat yang mampu membentuk kristal protein. Selanjutnya keempat isolat yang diperoleh digunakan sebagai bahan aktif dalam formulasi bioinsektisida. Formula terbaik berdasarkan kriteria viabilitas bakteri adalah formula yang menggunakan bahan pembawa berupa white clay. Formula terbaik untuk bioinsektida cair berdasarkan kriteria viabilitas B. thuringiensisdan kejernihan bioinsektisida adalah menggunakan maltosesebagai osmoprotektan.Pada pengujian toksisitas isolat B. thuringiensisterhadap larvaulat jengkal(Hyposidra talaca)menunjukkan bahwa B. thuringiensishasil percobaan dapat mengen-dalikan larva ulat jengkalhingga 37,5%. Namun demikian toksisitasnya memerlukan waktu yang lebih lama dibandingkan dengan bioinsektisida berbahan aktif B. thuringiensiskomersial. 

[Kata kuci: Bioinsektisida Bt, pengendalian hama terpadu, sipermetrin, ulat jengkal teh].

Downloads

Download data is not yet available.

References

Ash G (2010). The science, art and business of successful bioherbicides. Biological Control, 52(3), 230-240.

Behle R & T Birthisel (2014). Formulations of entomopathogens as bioinsecticides. In, Mass Production of Beneficial Organisms. Elsevier. 483-517

Bergaya F & G Lagaly (2013) Handbook of clay science. Newnes, 2013,

Best H (2010). Environmental concern and the adoption of organic agriculture. Society Natural Resources, 23(5), 451-468.

Biondi A, L Zappalà, N Desneux, A Aparo, G Siscaro, C Rapisarda, T Martin & G Tropea Garzia (2015). Potential toxicity of α-cypermethrin-treated nets on Tuta absoluta (Lepidoptera: Gelechiidae). Journal of economic entomology, 108(3), 1191-1197.

Blessing LDT, OÁ Colom, S Popich, A Neske & A Bardón (2010). Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, 83(3), 307-310.

Bougouffa S, A Radovanovic, M Essack & VB Bajic (2014). DEOP: a database on osmoprotectants and associated pathways. Database, 2014(

Chattopadhyay P, G Banerjee & S Mukherjee (2017). Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. Biotech, 7(1), 60.

Cranfield J, S Henson & J Holliday (2010). The motives, benefits, and problems of conversion to organic production. Agriculture Human Values, 27(3), 291-306.

Damalas C & S Koutroubas. 2018. Current status and recent developments in biopesticide use. Multidisciplinary Digital Publishing Institute.

Dashora K, S Roy, A Nagpal, SM Roy, J Flood, AK Prasad, R Khetarpal, S Neave & N Muraleedharan (2017). Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects. Applied Microbiology Biotechnology, 101(5), 1795-1803.

Doanh N, N Thuong & Y Heo (2018). Impact of Conversion to Organic Tea Cultivation on Household Income in the Mountainous Areas of Northern Vietnam. Sustainability, 10(12), 4475.

Guthman J (2014) Agrarian dreams: The paradox of organic farming in California. Univ of California Press, 2014,

Han W-S, S-F Zhang, F-Y Shen, H-J Zhang & X-W Gao (2011). Sublethal effects of beta-cypermethrin on abamectin-resistant and susceptible population of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). J. Environ. Entomol, 33(335-341.

Johler S, EM Kalbhenn, N Heini, P Brodmann, M Bağcıoğlu, M Contzen, R Stephan & M Ehling-Schulz (2018). Enterotoxin production of Bacillus thuringiensis isolates from biopesticides, foods, and outbreaks. Frontiers in microbiology, 9(1915.

Karki L, R Schleenbecker & U Hamm (2011). Factors influencing a conversion to organic farming in Nepalese tea farms. Journal of Agriculture Rural Development in the Tropics Subtropics, 112(2), 113-123.

Läpple D (2010). Adoption and abandonment of organic farming: an empirical investigation of the Irish drystock sector. Journal of Agricultural Economics, 61(3), 697-714.

Mamun M & M Ahmed (2011). Integrated pest management in tea: prospects and future strategies in Bangladesh. The Journal of Plant Protection Sciences, 3(2), 1-13.

Meissle M, J Romeis & F Bigler (2011). Bt maize and integrated pest management‐a European perspective. Pest Management Science, 67(9), 1049-1058.

Mzoughi N (2011). Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter? Ecological Economics, 70(8), 1536-1545.

Pardo-Lopez L, C Munoz-Garay, H Porta, C Rodríguez-Almazán, M Soberón & A Bravo (2009). Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides, 30(3), 589-595.

Peralta C & L Palma (2017). Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxins, 9(1), 39.

Pietrantonio P, T Junek, R Parker, D Mott, K Siders, N Troxclair, J Vargas-Camplis, J Westbrook & V Vassiliou (2014). Detection and evolution of resistance to the pyrethroid cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) populations in Texas. Environmental Entomology, 36(5), 1174-1188.

Pimentel D & M Burgess (2014). An environmental, energetic and economic comparison of organic and conventional farming systems. In, Integrated Pest Management. Springer. 141-166

Sanahuja G, R Banakar, RM Twyman, T Capell & P Christou (2011). Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnology Journal, 9(3), 283-300.

Travers RS, PA Martin & CF Reichelderfer (1987). Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol., 53(6), 1263-1266.

Van Frankenhuyzen K (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of invertebrate pathology, 101(1), 1-16.

Zacharia JT (2011). Ecological effects of pesticides. In, Pesticides in the Modern World-Risks and Benefits. InTech.

Zhou J, Y Shu, G Zhang & Q Zhou (2012). Lead exposure improves the tolerance of Spodoptera litura (Lepidoptera: Noctuidae) to cypermethrin. Chemosphere, 88(4), 507-513.

Downloads

Submitted

25-03-2019

Accepted

29-04-2019

Published

07-05-2019

How to Cite

WIDIASTUTI, H., PANJI, T. .-., YUSUP, C. A., RUSMANA, I., & WAHYONO, T. E. (2019). Formulasi bioinsektisida Bacillus thuringiensis isolat indigenos untuk pengendalian Hyposidra talaca pada tanaman teh (Formulation of indigenous isolate of Bacillus thuringiensis bioinsecticide to control Hyposidra talaca on tea). Menara Perkebunan, 87(1). https://doi.org/10.22302/iribb.jur.mp.v87i1.329

Most read articles by the same author(s)

<< < 1 2 3 4 > >>