Pemodelan protein dan analisis molecular docking enzim β-glukanase solat Bacillus subtilis W3.15


  • Ainia Hanifitri Bogor agricultural university
  • Laksmi Ambarsari Bogor Agricultural University
  • Nisa Rachmania Mubarik Departemen Biologi, FMIPA, IPB University, Bogor, 16680, Indonesia



The β-glucanase enzyme is an enzyme protein that can hydrolyze β-glucan, one of the main components of the fungal cell wall. This enzyme protein is produced by several bacteria, one of which is B. subtilis. The three-dimensional (3D) structure of proteins is necessary to understand their properties and functions of proteins. Enzyme proteins can be analyzed for their structure and function using in silico method. This study aims to detect the β-glucanase gene from B. subtilis W3.15 and analyze it using the in silico method. The methods in this research are homology modeling and molecular docking analyses. Modeling was carried out using the SWISS-MODEL server and docking analysis using the PLANTS 1.1 program. Modeling the β-glucanase enzyme is based on the template of the β-glucanase enzyme protein model with PDB code 3o5s. The results of sequence alignment and model visualization were quite good as indicated by the model having a Ramachandran Plot value in the favored area of 91.10 %, a MolProbity score of 0.95, and a QMEAN value of 0.90 ± 0.06. The β-glucanase enzyme model was then docked using the PLANTS1.1 program with native ligand B3P, 1,4-β-D-Glucan, D-glucose, β-D-Glucan from oats, and N-Acetyl glucosamine. The results of docking analysis showed that the β-glucan ligand (β-D-glucan from oats) used as a substrate in the cultivation of isolate B. subtilis W3.15 had a better binding energy prediction value compared to the B3P ligand, which is a natural ligand in the template proteins.


[Keywords: β-Glucan, β-D-Glucan from oat, ligand, PLANTS 1.1, 3D structure, SWISS-MODEL]


Download data is not yet available.

Author Biography

Laksmi Ambarsari, Bogor Agricultural University

Lecturer of Biochemistry Departement Bogor Agricultural University 


Budiarti, S. W, & Widyastuti, S. M. (2011). Aktivitas antifungal β-1,3-glukanase Trichoderma reesei pada fungi akar Ganoderma philippii. Jurnal Perlindungan Tanaman, 14 (2), 455-460.

Chen, V. B., Arendall, W. B., Jeffrey, J. H., Daniel, A. K., Robert, M. I., Gary, J. K., Laura, W. M., Jane, S. R., & David, C. R. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66, 12-21.

Dassault Systèmes. (2015). BIOVIA, Discovery studio modeling environment, Version 4.5, San Diego: Dassault Systèmes.

Dewi, R. T., Mubarik, N. R., & Suhartono, M. T. (2016). Medium optimation of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates Journal of Food & Agriculture, 28(2), 116-125.

Elanchezhiyan, K., Keerthana, U., Nagendran, K., Prabhukarthikeyan, S. R., Prabakar, K., Raguchander, T., & Karthikeyan, G. (2018). Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 103, 92–101. 2018.05.008

Ejaz, U., Muhammad S., & Abdelaz, G. (2021). Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel), 6(3), 44. 6030044

Furtado, G. P., Ribeiro, L. F., Santos, C. R., Tonoli, C. C., Angelica, R. S., Oliveira, R. R., Murakami, M. T., & Ward, R. J. (2011). Biochemical and structural characterization of a β-1,3–1,4-glucanase from Bacillus subtilis 168. Process Biochemistry, 46(5), 1202-1206.

Gonçalves, A. C., dos S., Rezende, R. P., Marques, E. de L. S., Soares, M. R, Dias, J. C. T., Romano, C. C., Costa, M. S., Dotivo, N. C., de Moura, S. R., de Oliveira, I. S, et al. (2020). Biotechnological potential of mangrove sediments: Identification and functional attributes of thermostable and salinity-tolerant β-glucanase. International Journal of Biological Macromolecules, 147, 521–526. 01.078

Hakkar, A. A., Rosmana, A., & Rahim, M. D. (2014). Pengendalian penyakit busuk buah phytophthora pada kakao dengan cendawan endofit Trichoderma asperellum. Jurnal Patologi Indonesia, 10(5). 139-144.

Hegazy, W. K., Abdel-Salam, M. S., Hussain, A. A., Abo-Ghalia, H. H., & Hafez, S. S. (2018). Improvement of cellulose degradation by cloning of endo-β-1,3-1,4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain. Journal of Genetic Engineering and Biotechnology, 16(2), 281–285.

Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D., & Hirsch, A. M. (2018). Antifungal activity of bacillus species against fusarium and analysis of the potential mechanisms used in biocontrol. Frontiers in Microbiology, 9, 1–12. 3389/fmicb.2018.02363

Komari, N., Hadi, S., & Suhartono, E. (2020). Pemodelan protein dengan homology modelling menggunakan SWISS-MODEL. Jurnal Jejaring Matematika dan Sains, 2(2), 65-70.

Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84-96.

Land, H., & Humble, M. S. (2018). YASARA: a tool to obtain structural guidance in biocatalytic investigations. Methods in Molecular Biology, 1685, 43-67.

Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl Cryst, 26, 283-291.

Lopez-Camacho, E., Garcia-Godoy, M. J., Garcia-Nieto, J., Nebro, A. J., & Aladana-Montes, J. F. (2019). Optimizing ligand conformations in flexible protein targets: a multi-objective strategy. Soft Computing, 24, 10705–10719.

Loni, P. P., Patil, J. U., Phugare, S. S., & Bajekal, S. S. (2014). Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. Journal of Basic Microbiology, 54(10), 1080–1089. 10.1002/jobm.201300533

Munyaka, P. M., Nandha, N. K., Kiarie, E., Nyachoti, C. M., & Khafipour, E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95(3), 523 - 540.

Prieto-Martinez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Molecular docking: current advances and challenges. TIP Revista Especializada en Ciencias Quimico-Biologicas, 21(1), 65-87. 23958723e.2018.0.143

Saudale, F. Z. (2020). Pemodelan homologi komparatif struktur 3D protein dalam desain dan pengembangan obat. Al-Kimia, 8(1), 93-103.

Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. 10.1093/nar/gkg520

Seprianto. (2018). Bioinformatika untuk Protein Modelling. Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, Universitas Esa Unggul Press.

Sharma, R., Gil, G., & Victoria, H. (2022). A study of different actions of glucanases to modulate microfibrillated cellulose properties. Cellulose, 29, 2323–2332.

Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, G., Haas, J., & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 36, 1765-1771. /btz828

Suryadi, Y., Priyatno, T. P., I Made, S., Susilowati, D. N., Patricia, & Irawati, W. (2013). Karakterisasi dan identifikasi isolate bakteri endofitik penghambat jamur patogen padi. Bul. Plasma Nutfah, 19(1), 25-32. /blpn.v19n1.2013.p%p

Tambunan, U. S. F., Bramantya, N., & Parikesit, A. A. (2011). In silico modification suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC). BMC Bioinformatics, 12(13), 1–15. 10.1186/1471-2105-12-S13-S23

Tumilaar, S. G., Siampa, J. P., & Tallei, T. E. (2021). Penambatan molekuler senyawa bioaktif dari ekstrak etanol daun pangi (Pangium edule) terhadap reseptor protease hiv-1. Jurnal Ilmiah Sains, 21(1), 6–16. 21.1.2021.30282

Wang, M., Jian, D., Daolei, Z., Xuezhi, L., & Jian, Z. (2017). Modification of different pulps by homologous overexpression alkali-tolerant endoglucanase in Bacillus subtilis Y106. Scientific Reports, 7, 3321.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(1), 296-303.

Wijaya H., & Hasanah, F. (2016). Prediksi strukur tiga dimensi protein alergen pangan dengan metode homologi menggunakan program SWISS-MODEL. BioPropal Industri, 7(2), 83-94.

Yu, W. Q., Zheng, G. P., Yan, F. C., Liu, W. Z., & Liu, W. X. (2019). Paenibacillus terrae NK3-4: a potential biocontrol agent that produces β-1,3-glucanase. Biological Control, 129, 92–101.








How to Cite

Hanifitri, A., Ambarsari, L., & Mubarik, N. R. (2023). Pemodelan protein dan analisis molecular docking enzim β-glukanase solat Bacillus subtilis W3.15: . Menara Perkebunan, 91(1), 59–71.