Isolation and selection of siderophore-producing bacteria from roots of Simadu pineapple (Ananas comosus) in Subang District, West Java

Authors

  • Hanifah FUADI Institut Pertanian Bogor
  • Prayoga SURYADARMA Institut Pertanian Bogor
  • Khaswar SYAMSU Institut Pertanian Bogor
  • Surono SURONO Balai Penelitian Tanah
  • Nurika Asih SETIYANI Institut Pertanian Bogor
  • Selvia Mahilda RIDHOHA Institut Pertanian Bogor
  • Aninda Sekar ZAHRA Institut Pertanian Bogor
  • Nadia STEPANI Institut Pertanian Bogor
  • Muhammad Rasyid RAMADHAN Institut Pertanian Bogor

DOI:

https://doi.org/10.22302/iribb.jur.mp.v90i2.502

Keywords:

Bacteria isolation, Providencia, siderophore accumulation, Simadu Subang pineapple root

Abstract

Abstrak

Bakteri mampu menghasilkan siderofor umtuk mengkelat besi dalam lingkungan dan digunakan oleh tanaman sebagai kofaktor dalam pembentukan klorofil untuk pembentukan glukosa. Penelitian ini bertujuan untuk mendapatkan bakteri penghasil siderofor tinggi dari akar nanas Simadu, Kabupaten Subang Provinsi Jawa Barat. Bakteri diisolasi dari akar nanas Simadu, kemudian diseleksi dengan membedakan morfologinya dan diidentifikasi sebagai penghasil siderofor pada media Chrome Azurol S (CAS). Diperoleh 10 isolat bakteri (M1 sampai dengan M10) yang mampu menghasilkan siderofor. Isolat bakteri M7 memiliki kemampuan menghasilkan siderofor tertinggi. Isolat M7 teridentifikasi sebagai bakteri Gram negatif. Hasil analisis pohon filogenetik berdasarkan sekuensing 16S rDNA menunjukkan isolat kelompok genus Providencia. Dibandingkan dengan Providencia vermicola ,  isolat standar dari InaCC yang berasal dari akar Curcuma zedoaria, M7 menunjukkan produksi siderofor yang lebih tinggi pada media LB pada kondisi aerobik.

[Kata kunci: Isolasi bakteri, Providencia, akumulasi siderofor, akar nanas Simadu Subang]

Abstract

Bacteria can produce siderophores for chelating iron in environments and are used by plants as an ingredient cofactor in building chlorophyll for glucose production. This study aims to obtain high siderophore-producing bacteria from the roots of pineapple Simadu, Subang District, West Java Province. Bacteria were isolated from Simadu pineapple roots, then selected by distinguishing their morphology and identified as producing siderophores with Chrome Azurol S (CAS) media. Obtained 10 bacterial isolates (M1 to M10) capable of producing siderophores. Bacterial isolate M7 had the highest siderophore production ability. M7 isolate was identified as Gram-negative bacteria. The results of the phylogenetic tree analysis based on 16S rDNA sequencing showed this isolate as the genus Providencia. Compared to the Providencia vermicola as reference isolate from InaCC derived from the roots of Curcuma zedoaria, M7 showed higher siderophore production in LB media under aerobic conditions.

[Keywords:          Bacteria isolation, Providencia, siderophore accumulation, Simadu Subang pineapple root]

Downloads

Download data is not yet available.

Author Biography

Prayoga SURYADARMA, Institut Pertanian Bogor

Departemen Teknologi Industri Pertanian

References

Annisa (2021). Kang akur terima kunjungan LPPM IPB terkait budidaya Nanas Simadu. Desember 27, 2021. Diunduh dari https://subang.go.id/public/index.php/berita/kang-akur-terima-kunjungan-lppm-ipb-terkait-budidaya-nanas-simadu. [1 Juli, 2022].

Archer L, JH Crane & U Albrecht (2022). Trunk injection as a tool to deliver plant protection materials—An overview of basic principles and practical considerations. Horticulturae 8(6), 552.

Ariga T, K Hazama, S Yanagisawa, T Yoneyama, T Ariga, K Hazama & S Yanagisawa (2014). Soil science and plant nutrition chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci Plant Nutr. 60(4), 460–469.

Arora NK & M Verma (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech. 7(6), 1–9.

Ferreira CMH, S López-Rayo, JJ Lucena, E V Soares & HMVM Soares (2019). Evaluation of the efficacy of two new biotechnological-based freeze-dried fertilizers for sustainable Fe deficiency correction of soybean plants grown in calcareous soils. Front Plant Sci. 10 (1335), 1–14.

Guerfali MM, W Djobbi, K Charaabi, H Hamden, S Fadhl, W Marzouki, F Dhaouedi & C Chevrier (2018). Evaluation of Providencia rettgeri pathogenicity against laboratory Mediterranean fruit fly strain (Ceratitis capitata). PLoS One 13(5), 1–18.

Hochmuth G (2017). Iron (Fe) nutrition of plants. Univ Florida 1(8), 1–7.

Husson O (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1–2), 389–417.

Jain A, R Jain & S Jain (2020). Basic Techniques in Biochemistry, Microbiology and Molecular Biology. New York, Humana Press.

Johann T, J Keth, M Bros & H Frey (2019). A general concept for the introduction of hydroxamic acids into polymers. Chem Sci. 10(29), 7009–7022.

Johnson MO (2016). Manganese chlorosis of pineapples: its cause and control. Univ Hawaii 25(52), 38.

Klem-Marciniak E, J Hoffmann, M Huculak-Maczka, K Marecka & K Hoffmann (2021). Chemical stability of the fertilizer chelates Fe-EDDHA and Fe-EDDHSA over time. Molecules.26(7).

Kobayashi T, T Nozoye & NK Nishizawa (2019). Iron transport and its regulation in plants. Free Radic Biol Med. 133, 11–20.

Lupande-Mwenebitu D, M B Khedher, S Khabthani, L Rym, MF Phoba, LZ Nabti, O Lunguya-Metila, A Pantel, JP Lavigne, & JM Rolain, et al. (2021). First genome description of Providencia vermicola isolate bearing NDM-1 from blood culture. Microorganisms 9(8), 1–12.

Lushchak O V, M Piroddi, F Galli & VI Lushchak (2014). Aconitase post-translational modification as a key in linkage between krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. 19(1), 8–15.

Mao YC, CL Chang, YC Huang, LH Su & CT Lee (2018). Laboratory investigation of a suspected outbreak caused by Providencia stuartii with intermediate resistance to imipenem at a long-term care facility. J Microbiol Immunol Infect. 51(2), 214–219.

Nabila, Kasiamdari RS (2021). Antagonistic activity of siderophore-producing bacteria from black rice rhizosphere against rice blast fungus Pyricularia oryzae. Microbiol Biotechnol Lett. 49(2), 217–224.

Naseer I, M Ahmad, SM Nadeem, I Ahmad, Najm-ul-Seher & ZA Zahir (2019). Biofertilizers for Sustainable Agriculture and Environment. Switzerland, Springer.

de Oliveira DA, S da C Ferreira, DLR Carrera, CP Serrão, DM Callegari, NLF Barros, FM Coelho & CRB de Souza (2021). Characterization of Pseudomonas bacteria of Piper tuberculatum regarding the production of potentially bio-stimulating compounds for plant growth. Acta Amaz. 51(1), 10–19.

Ozturk B, O Karakaya, H Erdem, E Küçüker, Y Özkan & K Yıldız (2019). The effects of foliar iron treatments (+Fe) on fruit quality of different pear cultivars. Erwerbs-Obstbau. 61, 373-378.

Panda BB, S Sharma, PK Mohapatra & A Das (2014). Iron Nutrition vis-à-vis aconitase activity and ferritin accumulation in tropical Indica Rice cultivars differing in grain iron concentration. Am J Plant Sci. 5(0), 2829-2841.

Rahmithasuci I, T Hidayat, W Purwianingsih (2014). Keragaman bakteri endofit pada kultivar nanas [Ananas comosus (L.) Merr] Simadu dan biasa di kabupaten Subang. Formica Online. 1(1), 8.

Rout GR & Sahoo S (2015). Role of iron in plant growth and metabolism. Rev Agric Sci. 3, 1–24.

Schenkeveld WDC, E Hoffland, AM Reichwein, EJM Temminghoff, & WH Van Riemsdijk (2012). The biodegradability of EDDHA chelates under calcareous soil conditions. Geoderma. 173–174, 282–288.

Senthilkumar M, N Amaresan & A Sankaranarayanan (2021). Plant-Microbe Interactions. New York, Humana Press.

Sudewi S, A Ala, Baharuddin, M Farid (2020). The isolation, characterization endophytic bacteria from roots of local rice plant Kamba in Central Sulawesi, Indonesia. Biodiversitas. 21(4), 1614–1624.

Vigani G, Y Pii, S Celletti, M Maver, T Mimmo, S Cesco & S Astolfi (2018). Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? Plant Physiol Biochem. 126, 86–96.

Wu CF, XM Xu, Q Zhu, MC Deng, L Feng, J Peng, JP Yuan & JH Wang (2014). An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22. Appl Microbiol Biotechnol. 98(8), 3801–3807.

Zhou J, Y Zeng, GP Demopoulos, C Li & Z Li (2018). Phase transition of FeSO4·7H2O to FeSO4·H2O in the H2SO4-HCl-H2O system by modeling solubility. ACS Sustain Chem Eng. 6(2), 2207–2219.

Downloads

Submitted

01-08-2022

Accepted

04-11-2022

Published

08-11-2022

How to Cite

FUADI, H., SURYADARMA, P., SYAMSU, K., SURONO, S., SETIYANI, N. A., RIDHOHA, S. M., ZAHRA, A. S., STEPANI, N., & RAMADHAN, M. R. (2022). Isolation and selection of siderophore-producing bacteria from roots of Simadu pineapple (Ananas comosus) in Subang District, West Java. Menara Perkebunan, 90(2). https://doi.org/10.22302/iribb.jur.mp.v90i2.502