Transformation of DHN1 gene and DHN promoter constructs into sugarcane calli, regeneration of the calli, and acclimatization of the plantlets

Authors

  • Hayati Minarsih Indonesian Oil Palm Research Institute
  • Fauziatul Fitriyah Indonesian Oil Palm Research Institute
  • Annisa Aulya Aksa Indonesian Oil Palm Research Institute
  • Turhadi Turhadi Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya
  • Deden Sukmadjaya Indonesian Center for Agricultural Biotechnology and Genetic Resource Research and Development
  • Sustiprajitno Sustiprajitno Indonesian Center for Agricultural Biotechnology and Genetic Resource Research and Development

DOI:

https://doi.org/10.22302/iribb.jur.mp.v91i1.512

Keywords:

drought stress, dehydrin, promoter region, sugarcane calli, acclimatization

Abstract

Dehydrin is known to have an important role in plant response and adaptation to abiotic stresses including drought and high salinity. Previous research reported the isolation of the full-length coding sequence (CDS) of DHN1 from sugarcane var. PSJT 941, and it shares a high homology with DHN genes from sorghum and other sugarcane varieties. In this study, the full-length CDS was cloned under the constitutive CaMV35S promoter and transformed into sugarcane calli mediated by Agrobacterium tumefaciens. The DHN promoter, Pr-1DHNSo, was also successfully isolated from the sugarcane var. PSJT 941 and cloned into the pBI121 expression vector. The promoter construct was subsequently transformed into sugarcane calli of var. Kidang Kencana. Transgenic sugarcane carrying DHN1 gene and DHN promoter constructs were regenerated according to the standard protocol of sugarcane tissue culture. Optimization of an acclimatization protocol using modified post-rooting media was also conducted and the resulting protocol reduced the total mortality rates of the transformed plantlets. The presence of the gene and promoter constructs was periodically tested by PCR using specific primers. The genotyping results showed that the constructs were present for more than a year after transformation.

Downloads

Download data is not yet available.

References

Augustine, S. M., Narayan, J. A., Syamaladevi, D. P., Appunu, C., Chakravarthi, M., Ravichandran, V., & Subramonian, N. (2015). Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Science, 232, 23–34. http://dx.doi.org/10.1016/j.plantsci.2014.12.012

Amar, B. S., Safi, H., Malika, A., Azaza, J., Khoudi, H., Mamoudi, K., & Brini, F. (2013). Analysis of the promoter activity of a wheat dehydrin gen (DHN-5) under various stress conditions. Australian Journal of Crop Science 7, 1875–1883.

Cui, H., Wang, Y., Yu, T., Chen, S., Chen, Y., & Lu, C. (2019). Heterologous expression of three Ammopiptanthus mongolicus dehydrin genes confers abiotic stress tolerance in Arabidopsis thaliana. Plants 9(2), 193.

Divya, K., Kavi, K. P. B., Bhatnagar-Mathur, P., Singam, P., Sharma, K. K., Vadez, V., & Reddy, P. S. (2019). Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn, and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Molecular Biology Reports 46(6), 6039–6052.

Dutt M, SA Dhekney, L Soriano, R Kandel & JW Grosser (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research 1,14047. http://dx.doi.org/10.1038/hortres.2014.47

Elmaataoui, S., Mazri, M. A., Meziani, R., & Bouchiha, F. (2020). Effects of culture medium strength and antioxidants on adventitious bud multiplication, hyperhydricity and tissue browning of date palm cv. Aziza Bouzid. World Journal Advanced Research and Reviews 6(2), 103–109.

Ferreira, T. H. S., Tsunada, M. S., Bassi, D. Araújo, P., Mattiello, L., Giovanna, V. D., Righetto, G. L., Gonçalves, V. R., Lakshmanan, P., & Menossi, M. (2017). Sugarcane water stress tolerance mechanism and its implications on developing biotechnology solutions. Frontiers in Plant Science 8, 1–18.

Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., &Masmoudi, K. (2011). Plant dehydrins and stress tolerance. Versatile protein for complex mechanisms. Plant Signals and Behaviour 6(10), 1503–1509.

Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual review of plant biology 65, 715–741.http://dx.doi.org/10.1146/annurev-arplant-050213-040000

Iskandar, H. M., Casu, R. E., Fletcher, A. T., Schmidt, S., Xu, J., Maclean, D. J., Manners, J. M., & Bonnett, G. D. (2011). Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biology 11(12), 1–14.

Iskandar, H. M., Suhandono, S., Pambudi, J., Kristanti, T., Putranto, R. A., Mose, W., & Sustiprijatno. (2020). Characterization of a drought inducible Dehydrin promoter from sugarcane (Saccharum officinarum L.) in tobacco (Nicotiana tabacum L.). Journal of Tropical Crop Science 7(1), 28–36.

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase is a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6, 3901–3907.

Jouanin, L, ACM Brasileiro, JC Leple, G Pilate & D Cornu (1993). Genetic transformation: a short review of methods and their application, results and perspectives for forest trees. Annals of Forest Science 50, 325–336.

Kabylbekova, B., Kovalchuk, I., Mukhitdinova, Z., Turdiyev, T., Kairova, G., Madiyeva, G., & Reed, B. M. (2020). Reduced major minerals and increased minor nutrients improve micropropagation in three apple cultivars. In Vitro Cellular & Developmental Biology -Plant 56, 335–349.

Kumar T., Khan, M. R., Jan, S. A., Ahmad, N., Ali, N., Zia, M. A., Roomi, S., Iqbal, A., & Ali, G. M. (2014). Efficient regeneration and genetic transformation of sugarcane with AVP1 gene. American-Eurasian Journal of Agricultural & Environmental Science 14, 165–171.

Lakshmanan, P., & Robinson, N. (2014). Stress physiology: Abiotic stresses in Sugarcane: Physiology, Biochemistry, and Functional Biology, P. H. Moore & F. C. Botha (Eds.), (pp 411–434). John Wiley & Sons, Inc.

Luo, D., Hou, X., Zhang, Y., Meng, Y., Zhang, H., Liu, S., Wang, X., & Chen, R. (2019). CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences 20(8), 1989.

Minarsih, H., Supriyadi, Putra, S. M., & Asmini, B. (2012). Kloning parsial gen penyandi P5CS dari tebu (Saccharum officinarum L.). Menara Perkebunan 80(1), 32–40.

Minarsih, H., Suhandono, S., Faniar, Kristianti, T., Amanah, D. M., & Sustiprijatno (2018). Isolasi dan karakterisasi gen dehydrin dari tebu (Saccharum officinarum L.) yang terlibat dalam respon toleransi cekaman kekeringan. Menara Perkebunan 86(2), 116–125.

Minarsih, H., Suhandono, S., Fuadi, A. K., Kristanti, T., Putranto, R. A., Sukmadjaya, D., & Sustiprijatno (2020). Isolation and characterization of Dehydrin promoter region from sugarcane (Saccharum officinarum L.). Menara Perkebunan 88(1), 16–28.

Oakes, A. D., Desmarais, Powell, W. A., Maynard, C. A., Drive, F., & Hall, M. (2016). Improving rooting and shoot tip survival of micropropagated transgenic American chestnut. Shoots 51(2), 171–176.

Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., Dos Santos, R. C., De Albuquerque, M. F. P., & De Lima, L. M. (2014). Plant promoters: an approach of structure and function. Molecular Biotechnology 56, 38–49. http://dx.doi.org/10.1007/s12033-013-9713-1

Ramiro, D. A., Melotto-Passarin, D. M., De Ameida, B. M., Dos Santos, F., Gomez, S. G. P., Júnior, N. S. M., Lam, E., & Carrer, H. (2016). Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnology Journal 14, 1826–1837.

Reis, R., Da Cunha, B., Martins, P., Martins, M., Alekcevetch, J., & Chalfun, A. (2014). Induced over-expression of ArDREB2A CA improves drought tolerance in sugarcane. Plant Science 221, 59–68. http://dx.doi.org/10.1016/j.plantsci.2014.02.003

Rezali, N. I., Sidik, N. J., Saleh, A. Osman, N. I., & Adam, N. A. M. (2017). The effects of different strength of MS media in solid and liquid media on in vitro growth of Typhonium flagelliforme. Asian Pacific Journal of Tropical Biomedicine 7(2), 151–156.

Sain, S. L., Oduro, & Furtex, D. B. (1994). Genetic transformation of cocoa leaf cells using Agrobacterium tumefaciens. PCTOC 37, 243–251.

Shafique, M., Khan, S. J., & Khan, N. H. (2015). Appraisal of nutritional status and in vitro mass propagation of sugarcane (Saccharum officinarum L . Cv . Us-633) through callus culture. Pakistan Journal of Biochemistry and Biotechnology 48(2), 48–52.

Sugiharto, B., & Safitri, H. (2011). A comparison study for Agrobacterium mediated transformation method in sugarcane (Saccharum spp L.). Jurnal Ilmu Dasar 12(2), 140–147.

Sugiharto, B. (2017). Biotechnology of drought-tolerance sugarcane. Sugarcane-Technology and Research. A. de Oliveira (Ed), Intechopen. http://dx.doi.org/10.5772/intechopen.72436

Tiwari, P., Yuvraj, I., Pradyumna, K. S., Poonam, C. S., Puneet, S. C., Veena, P., & Debasis, C. (2019). Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. Environmental and Experimental Botany 158, 136–149.

You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Sci 6, 1092. http://dx.doi.org/10.3389/fpls.2015.01092

Yu, Z., Wang, X., & Zhang, L. (2018). Structural and functional dynamics of dehydrins: a plant protector protein under abiotic stress. International Journal of Molecular Sciences 19(11), 3420.

Downloads

Submitted

11-10-2022

Accepted

02-02-2023

Published

06-04-2023

How to Cite

Minarsih, H., Fitriyah, F., Aksa, A. A., Turhadi, T., Sukmadjaya, D., & Sustiprajitno, S. (2023). Transformation of DHN1 gene and DHN promoter constructs into sugarcane calli, regeneration of the calli, and acclimatization of the plantlets . Menara Perkebunan, 91(1). https://doi.org/10.22302/iribb.jur.mp.v91i1.512

Most read articles by the same author(s)

<< < 1 2 3