Aktivitas hidrolisat protein terhadap perkecambahan dan pertumbuhan awal kacang hijau (Vigna radiata)

Authors

  • Fauziatul FITRIYAH Pusat Penelitian Bioteknologi dan Bioindustri Indonesia
  • Irma KRESNAWATY Pusat Penelitian Bioteknologi dan Bioindustri Indonesia
  • Djoko SANTOSO Pusat Penelitian Bioteknologi dan Bioindustri Indonesia

DOI:

https://doi.org/10.22302/iribb.jur.mp.v87i2.340

Keywords:

Plant biostimulant, protein hydrolysis, plant growth, Vigna radiata

Abstract

Abstract

Plant bostimulant application have proven to improve field productivity to meet genetic potential. Protein hydrolisates has been utilized as plant biostimulant to increase crops productiviy and yield. Protein hydrolysate from organic waste or by product is highly potential for plant biostimulant, since it is efficiently turn the waste into high value product.. Trash fish meal (TI) and chicken feather meal (TB) have high protein content and are potential as plant biostimulant. Application of protein hydrolisates as biostimulant has been acclaimed to improve plant growth. The aim of this study wasto evaluate the activity of protein hydrolysates from TB and TI on germination and early growth of mung bean. Hydrolysis was conducted under high temperature and pressure in acid condition. Application of protein hydrolysates under various concentrations: 5, 10, and 20 ppm. The effect of protein hydrolysates were evaluated on seed germination and root and colleoptile fresh weight. Chemical analysis was performed to measure nitrogen content in the materials. The result showed that germination at 10 ppm after 7 hours incubation of protein hydrolysate from TI and TB. Under TI hydrolysate germination was increase by 191.7%, from 21.7% blank solution to 63.3% of treatment. While under protein hydrolysate from TB increased by 99.5%, from 21.7% of blank solution to 43.3%. Activity of TB hydrolysate toward root and colleoptile growth was higher than in TI hydrolysate. Root growth was higher than colleoptile under all treatments. Protein hydrolysates of TI and TB could improve germination and early growth of mung bean and is highly potential as plant biostimulant.

[Keywords: plant biostimulant, protein hydrolysis, plant growthVigna radiata]

Abstrak

Aplikasi biostimulan tanaman terbukti mampu meningkatkan produktivitas riil di lapang sehingga mendekati potensi genetik tanaman. Hidrolisat protein telah dimanfaatkan sebagai biostimulan tanaman untuk meningkatkan produktivitas dan hasil panen berbagai tanaman. Hidrolisat protein dari limbah atau produk samping sangat potensial dikembangkan sebagai biostimulan tanaman karena mampu secara efisien mengubah sampah menjadi produk berharga. Tepung ikan rucah (TI) dan tepung bulu ayam (TB) adalah produk samping usaha perikanan dan peternakan dengan kandungan protein tinggi yang sangat potensial dikembangkan menjadi biostimulan untuk meningkatkan pertumbuhan tanaman. Tujuan penelitian ini adalah untuk mengetahui aktivitas hidrolisat protein dari TI dan TB terhadap perkecambahan dan pertumbuhan awal kacang hijau. Hidrolisis dilakukan pada suhu dan tekanan tinggi dalam kondisi asam. Hidrolisat yang diperoleh selanjutnya diaplikasikan pada benih kacang hijau pada konsentrasi 5, 10, dan 20 ppm. Parameter yang diamati berupa persentase perkecambahan dan pertumbuhan akar dan koleoptil semai. Analisis kimia dilakukan untuk memberikan data pendukung berupa kadar nitrogen pada kedua bahan baku. Hasil penelitian menunjukkan terjadinya peningkatan aktivitas perkecambahan kacang hijau pada inkubasi selama 7 jam dalam larutan 10 ppm hidrolisat TI dan TB. Kenaikan persentase perkecambahan pada hidrolisat TI sebesar 191,7%, yaitu dari 21,7% pada blanko menjadi 63,3% pada perlakuan. Sementara dalamhidrolisatTBpeningkatan aktivitas mencapai 99,5%, yaitu dari 21,7% pada blankomenjadi 43,3% pada perlakuan. Pertumbuhan akar dan koleoptil dengan aplikasi hidrolisat TB lebih tinggi dibandingkan pada aplikasi hidrolisat TI. Pengaruh hidrolisat protein lebih tinggi pada pertumbuhan akar dibandingkan koleoptil. Hidrolisat TI dan TB mampu meningkatkan perkecambahan dan pertumbuhan awal kacang hijau dan sangat potensial dikembangkan sebagai biostimulan tanaman. 

[Kata kunci:biostimulan tanaman, hidrolisisprotein, pertumbuhan tanaman,Vigna radiata]

Downloads

Download data is not yet available.

References

Arunlertaree C & C Moolthongnoi (2008). The use of fermented feather meal for replacement fish meal in the diet of Oreochromis niloticus. Env Nat Res J 6(1), 13-24.

Asia-Pasific Fishery Commission [APFIC] (2005). Low value and Trash Fish in Asia Pacific Region. Hanoi, FAO, Rap Publication 2005/21.

BPS (2019a). Populasi ayam ras pedaging menurut provinsi 2009-2018. Diakses melalui https://www.bps.go.id/dynamictable/2015/12/18/1034/populasi-ayam-ras-pedaging-menurut-provinsi-2009-2018.html [10 Juli 2019].

BPS (2019b). Produksi Perikanan Menurut Subsektor (ribu ton), 1999-2016. Diakses melalui https://www.bps.go.id/statictable/2014/01/16/1711/produksi-perikanan-menurut-subsektor-ribu-ton-1999-2016.html [10 Juli 2019].

Calvo P, L Nelson & JW Kloepper (2014). Agricultural uses of plant biostimulants. Plant Soil 383, 3–41.

Colla G, L Hoagland, M Ruzzi, M Cardarelli, P Bonini, R Canaguier & Y Rouphael (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8, 1-14.

Colla G, S Nardi, M Cardarelli, A Ertani, L Lucini, R Canaguier & Y Rouphael (2015). Protein hydrolysates as biostimulants in horticulture. Sci Hortic (Amsterdam) 196, 28–38.

Colla G, Y Rouphael, R Canaguier, E Svecova & M Cardarelli (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci 5, 448.

Ertani A, L Cavani, D Pizzeghello, E Brandellero, A Altissimo, C Ciavatta & S Nardi (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J Plant Nutr Soil Sci 172, 237–244.

Ertani A, M Schiavon, A Muscolo & S Nardi (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. Plant Soil 364, 145–158.

Gaidau C, DG Epure, M Niculescu, E Stepan, E Radu & M Gidea (2015). Application of collagen hydrolysate in cereal seed treatment. XXXIII IULTCS Congress. Diunduh dari http://www.aaqtic.org.ar/congresos/brasil2015/pdf/072.pdf [10 Juli 2019].

Ghassem M, SS Fern, M Said, ZM Ali, S Ibrahim, & AS Babji (2011). Kinetic characterization of Channa striatus muscle sarcoplasmic and myofibrillar protein hydrolysates. J Food Sci Tech 51(3), 467–475.

Hou H, B Li & X Zhao (2011). Enzymatic hydrolysis of defatted mackerel protein with low bitter taste. J Ocean Univ China 10, 85–92.

Kanetro B, A Slamet & A Wazyka (2018). Effect of various solvent on the specific amino acids of black soybean (Glycine soja) sprout. IOP Conf Ser: Earth Environ Sci 102 (1), 012002.

Kjeldahl J (1883). New method for the determination of nitrogen in organic substances. Z Anal Chem 22 (1), 366-383.

Klompong V, S Benjakul , M Yachai, W Visessanguan, F Shahidi &

KD Hayes (2009). Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). J Food Sci 74, C126–C133.

Kocira S (2019). Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chilean J Agric Res 79 (1), 17-25.

Lesilolo MK & EAMJ Riry (2013) Pengujian viabilitas dan vigor benih beberapa jenis tanaman yang beredar di pasaran kota Ambon. Agrogolia 2(1), 1–9.

Lucini L, Y Rouphael, M Cardarelli, R Canguier, P Kumar & G Colla (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hort 182, 124–133.

Matsumiya Y & M Kubo (2011). Soybean peptide: novel plant growth promoting peptide from soybean. In: H. El-Shemy (ed.), Soybean and Nutrition. Rijeka, In Tech Europe Publisher. p. 215–230.

Mladenova YI, P Maini, C Mallegni, V Goltsev, R Vladova, K Vinarova & S Rotcheva (1998). Siapton – An amino-acid-based biostimulant reducing osmostress metabolic changes in maize. Agro Food Indus Hi-Tech 9, 18–22.

Nardi S, D Pizzeghello, A Muscolo & AVianello (2002). Physiological effects of humic substances on higher plants. Soil Biol Biochem 34, 1527-1536.

Nirzalin & N Maliati (2017). Produktivitas pertanian dan involusi kesejahteraan petani (studi kasus di Meunasah Pinto Aceh Utara). Sodality: Jurnal Sosiologi Pedesaan 5 (2), 106-119.

Nurdiawati A, C Suherman, Y Maxiselly, MA Akbar, BA Purwoko, P Prawisudha & K Yoshikawa (2019). Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). Int J Recyc Org Waste Agriculture 8(3), 221-232.

Onifade AA, NA Al-Sane, AA Al-Musallam & S Al-Zarban (1998). A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66 (1), 1–11.

Pahua-Ramos ME, DJ Hernández-Melchor, B Camacho-Pérez & M Quezada-Cruz (2017). Degradation of chicken feathers: a review. BioTechnol: An Indian J 13 (6), 1-24.

Paleckiene R, A Sviklas & R Šlinkšiene (2007). Physicochemical properties of a microelement fertilizer with amino acids. Russ J Appl Chem 80, 352–357.

Parrado J, J Bautista, EJ Romero, AM Garcia-Martinez, V Friaza & M Tejada (2008). Production of a carobenzymatic extract: potential use as a biofertilizer. Bioresour Technol 99, 2312–2318.

Paul T, SK Halder, A Das, S Bera, C Maity, A Mandal, PS Das, PKD Mohapatra, BR Pati, & KC Mondal (2013). Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal Agric Biotechnol 2, 50-57.

Popko M, I Michalak, R Wilk, M Gramza, K Chojnacka & H Gorecky (2018). Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23(2), 470.

PUSDATIN PERTANIAN (2015). Analisis PDB Sektor Pertanian Tahun 2015. Jakarta, Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal - Kementerian Pertanian Indonesia.

Quartieri M, A Lucchi, B Marangoni, M Tagliavini& L Cavani (2002). Effects of the rate of protein hydrolysis and spray concentration on growth of potted kiwifruit (Actinidia deliciosa) plants. Acta Hort 594, 341–347.

Redmann RE & ZM Abouguendia (1979). Germination and seedling growth on substrates with extreme pH-laboratory evaluation of buffers. J App Ecol 16, 901-907.

Rouphael Y & G Colla (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9, 01633.

Saravanan K & B Dhurai (2012). Exploration on amino acid content and morphological structure in chicken feather fiber. J Textile Apparel Tech Manag 7 (3), 1-6.

Sari DA, I Kresnawaty, Priyono, A Budiani & D Santoso (2019). Peningkatan hasil panen kedelai (Glycine max L .) varietas Wilis melalui aplikasi biostimulan tanaman. Menara Perkebunan 87(1), 1-10.

Schaafsma G (2009). Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur J Clin Nutr 63, 1161–1168.

Selpiana, L Santoso & B Putri (2013). Kajian tingkat kecernaan pakan buatan yang berbasis tepung ikan rucah Pada ikan nila merah (Oreochromis niloticus). Rekayasa dan Teknologi Budidaya Perairan 1 (2), 101-108.

Sestili F, Y Rouphael, M Cardarelli, A Pucci, P Bonini, R Canaguier & G Colla (2018). Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front Plant Sci 9, 1-11.

Sudarmadji S, B Haryono & Suhardi (1996). Analisa Bahan Makanan dan Pertanian. Yogyakarta, Liberty Yogyakarta.

Taskin M, N Esim & S Ortucu (2012). Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90, 773–779.

Wilson HT, K Xu & AG Taylor (2015). Transcriptome analysis of gelatin seed treatment as a biostimulant of cucumber plant growth. Sci World J 391234.

Wisuthiphaet N, S Kongruang & C Chamcheun (2015). Production of fish protein hydrolysates by acid and enzymatic hydrolysis. J Med Bioengin 4 (6), 466-470.

Xu C & B Mou (2017). Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange. HortTech 27(4), 539-543.

Yakhin OI, AA Lubyanov, IA Yakhin & PH Brown (2017). Biostimulants in plant science: a global perspective. Front Plant Sci 7, 2049.

Yin H, J Pu, Y Wan, B Xiang, PJ Bechtel & S Sathivel (2010). Rheological and functional properties of Catfish skin protein hydrolysates. J Food Sci 75, E11-E17.

Zhang D & Y Hamauzu (2003). Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J Food Agric Env 1, 22-27.

Downloads

Submitted

21-07-2019

Accepted

06-10-2019

Published

31-10-2019

How to Cite

FITRIYAH, F., KRESNAWATY, I., & SANTOSO, D. (2019). Aktivitas hidrolisat protein terhadap perkecambahan dan pertumbuhan awal kacang hijau (Vigna radiata). Menara Perkebunan, 87(2). https://doi.org/10.22302/iribb.jur.mp.v87i2.340

Most read articles by the same author(s)

<< < 1 2 3 4 5