Optimasi nisbah natrium nitrat : urea dan konsentrasi nitrogen pada kultivasi Spirulina platensis untuk produksi protein dan pigmen fikosianin
DOI:
https://doi.org/10.22302/iribb.jur.mp.v88i2.395Keywords:
Alga hijau-biru, medium Zarrouk, metode permukaan respon-satu faktor, sumber nitrogenAbstract
The need of nitrogen (N) for the growth of Spirulina platensis and the production of protein and phycocyanin pigment is influenced by the type of source and the concentration of N contained in the growing media. Spirulina platensis can assimilate various N sources, including nitrate (NO3-) and urea. Urea is a cheap N source and easy to be obtained. Urea can also have a role as potential N source to support the growth and the metabolites production of cyanobacteria S. platensis. Partial substitution of N source (NO3‑) to urea in Zarrouk medium for S. platensis cultivation has not been conducted before. This study was aiming at determining the optimum ratio of NaNO3 : CO(NH2)2 and the optimum N concentration in the Zarrouk medium for protein and phycocyanin production by S. platensis. Response Surface Method (RSM)-one factor experimental design was employed in this study for determining the optimum N concentration at specific N concentration range and optimum ratio of N source that had been previously determined. The results demonstrated that the optimum ratio of NaNO3 : CO(NH2)2 for protein and phycocyanin production was 1:1. The optimum N concentration for protein and phycocyanin pigment production in S. platensis cultivation were 5.13 mmol L-1 and 4.94 mmol L-1 with the increament in about 51.95% and 25.16%, respectively, compared to the standar Zarrouk medium.
Kebutuhan unsur nitrogen (N) untuk pertumbuhan Spirulina platensis serta produksi protein dan pigmen fikosianin dipengaruhi oleh jenis sumber dan konsentrasi N yang terkandung dalam media tumbuh. Spirulina platensis dapat mengasimilasi berbagai sumber N, termasuk nitrat (NO3-) dan urea. Urea merupakan sumber N yang murah dan mudah diperoleh. Urea juga dapat berperan sebagai sumber N potensial untuk mendukung pertumbuhan dan produksi metabolit pada sianobakteria S. platensis. Substitusi sebagian sumber N (NaNO3) oleh urea dalam media Zarrouk untuk kultivasi S. platensis belum banyak dilakukan sebelumnya. Penelitian ini bertujuan untuk menentukan nisbah NaNO3 : CO(NH2)2 dan konsentrasi N optimum yang diperlukan dalam media Zarrouk untuk produksi protein dan fikosianin oleh S. platensis. Desain eksperimen RSM-one factor digunakan dalam penentuan konsentrasi N optimum pada rentang konsentrasi N dan nisbah sumber N optimum yang telah ditentukan sebelumnya. Hasil penelitian menunjukkan bahwa nisbah NaNO3 : CO(NH2)2 optimum untuk meningkatkan kandungan protein dan pigmen fikosianin S. platensis adalah 1:1. Konsentrasi N optimum untuk produksi protein dan pigmen fikosianin pada kultivasi S. platensis ialah 5,13 mmol L-1 dan 4,94 mmol L-1 dengan peningkatan sebesar 51,95% dan 25,16%, secara berturut-turut, bila dibandingkan dengan saat dikultivasi menggunakan media Zarrouk standar.
Downloads
References
Amanatin DR & T Nurhidayati (2013). Pengaruh kombinasi konsentrasi media ekstrak tauge (MET) dengan pupuk urea terhadap kadar protein Spirulina sp. Jurnal Sains dan Seni POMITS 2(2), 2–5.
Ambarwati DP, E Yudiati, E Supriyantini & L Maslukah (2018). Pola pertumbuhan, biomassa dan kandungan protein kasar kultur Skeletonema costatum skala massal dengan konsentrasi kalium nitrat berbeda. Buletin Oseanografi Marina 7(2), 75.
Avila-Leon I, M Chuei Matsudo, S Sato & JCM de Carvalho (2012). Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. Journal of Applied Microbiology 112(6), 1086–1094.
Aydar, AY (2018). Utilization of response surface methodology in optimization of extraction of plant materials. In : Silva, V. (ed) Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes, p. 157.
Bao Y, S Wen, W Cong, X Wu & Z Ning (2012). An optical-density-based feedback feeding method for ammonium concentration control in Spirulina platensis cultivation. J. Microbiol Biotcehnol 22(7), 967-974.
Bennett A & L Bogobad (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58(2), 419–435.
Boussiba S (1989). Ammonia uptake in the alkalophilic cyanobacterium Spirulina platensis. Plant and Cell Physiology 30(2), 303–308.
Bradford MM (1976). A rapid and sensitive method for the quantitation of microorganism quantities of protein in utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Chaiklahan R, N Chairasuwan & B Bunnag (2012). Stability of phycocyanin extracted from Spirulina sp: influence of temperature, pH and preservatives. Process Biochemistry 47, 659-664.
Chaiklahan R, N Chirasuwan, V Loha, S Tia & B Bunnag (2011). Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresource Technology 102, 7159-7164.
Deschoenmaeker F, G Bayon-Vincente, N Sachedeva, O Depraetere, JC Cabrera Pino, B Leroy, K Muylaert & R Wattiez (2017). Impact of different nitrogen sources on the growth of Arthrospira sp. PCC 8005 under batch and continuous cultivation–a biochemcial, transcriptomic and proteomic profile. Bioresour Technol 237, 78-88.
Dianursanti, Z Taurina & CM Indraputri (2018). Optimization growth of Spirulina platensis in bean sprouts extract medium with urea fertilizer for phycocyanin production as antioxidant. In : AIP Conference Proceedings, 1933.
Faridah A, SB Widjanarko, A Sutrisno & B Susilo (2012). Optimasi produksi tepung porang dari chip porang secara mekanis dengan metode permukaan respons. Jurnal Teknik Industri 13(2), 158-166.
Khazi MI, Z Demirel & MC Dalay (2018). Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. Journal of Applied Phycology 30(3), 1513–1523.
Khuri AI (2017). A general overview of response surface methodology. Biometrics & Biostatistics International Journal 5(3), 87-93.
Kim G, G Mujtaba & K Lee (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31(3), 257–266.
Kruger NJ (1994). The bradford method for protein quantitation. In: Walker JM. The Protein Protocols Handbook: Second Edition, p 15.
Li X, W Li, J Zhai, H Wei & Q Wang (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresource Technology, 368–376.
Madkour FF, AE Kamil & HS Nasr (2012). Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic research 38, 51-57.
Moraes CC, L Sala, GP Cerveira & SJ Kalil (2011). C-Phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering 28(1), 45-49.
Morocho-Jácome AL, S Sato, L Guimarães, CKC de Jesus & JCM de Carvalho (2016). Simultaneous use of sodium nitrate and urea as nitrogen sources improves biomass composition of Arthrospira platensis cultivated in a tubular photobioreactor. Engineering in Life Sciences 16, 338-347.
Notonegoro H, I Setyaningsih & K Tarman (2018). Kandungan senyawa aktif Spirulina platensis yang ditumbuhkan pada media walne dengan konsentrasi NaNO3 berbeda. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan 13(2), 111.
Nurani FR, ED Masithah & AS Mubarak (2012). Pengaruh konsentrasi pupuk Azolla piñata terhadap pertumbuhan populasi Spirulina platensis. Jurnal Ilmu Perikanan Dan Kelautan 4, 39–44.
Praharyawan S & SA Putri (2017). Optimasi efisiensi flokulasi pada proses panen mikroalga potensial penghasil biodiesel dengan flokulan ion magnesium. Biopropal Industri 8(2), 89-98.
Prasadi O (2018). Pertumbuhan dan biomasa Spirulina sp. dalam media pupuk sebagai bahan pangan fungsional. Jurnal Ilmiah Perikanan dan Kelautan 10(2), 119-123.
Putri MP, S Syukur & Z Chaidir (2015). Penggunaan sumber nitrogen terhadap kandungan protein dan asam amino pada mikroalga Spirulina platensis. Jurnal Kimia Unand 4(2), 11-17.
Rahman DY, FD Sarian, A van Wijk, M Martinez-Garcia & MJEC van der Maarel (2017). Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae a new natural blue food colorant. Journal of Applied Phycology 29(3), 1233-1239.
Rajasekaran C, CPM Ajeesh, S Balaji, M Shalini, R Siva, R Das, DP Fulzele & T Kalaivani (2016). Effect of modified zarrouk’s medium on growth of different Spirulina strain. Walailak J Sci & Tech 13(1), 67-75.
Richmond A (1988). Spirulina. In: Borowitzka MA & LJ Borowitzka. Micro-algal Biotechnology, p 85-121.
Rina T, A Putri, Karmiati, S Sundari, A Saputri (2017). Organik suplemen tinggi protein berbahan dasar Spirulina sp dengan media kultur limbah cair industri kecap. Jurnal Jeumpa 4(1), 80-91.
Rodrigues MS, LS Ferreira, A Converti, S Sato & JCM de Carvalho (2011). Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresource Technology 102(11), 6587–6592.
Saleh AM, DW Dhar & PK Singh (2011). Comparative pigment profiles of different Spirulina strains. Research in Biotechnology, 2(2), 67-74.
Sassano CEN, JCM Carvalho, LA Gioielli, S Sato, P Torre & A Converti (2004). Konetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source. Applied Biochemistry and Biotechnology 112, 143-150.
Seo YC, WS Choi, JH Park, JO Park, KH Jung & HY Lee (2013). Stable isolation of phycocyanin from Spirulina platensis associated with high pressure extraction process. International Journal of Molecular Sciences 4, 1778-1787.
Setyoningrum TM & MMA Nur (2015). Optimization of c-phycocyanin from S. platensis cultivated on mixotrophic condition by using response surface methodology. Biocatalysis and Agricultural Biotechnology 4, 603-607.
Soni RA, K Sudhakar & RS Rana (2017). Spirulina–from growth to nutritional product: a review. Trends in Food Science and Technology 69, 157–171.
Shanthi G, M Premalatha & N Anantharaman (2018). Effects of L-amino acids as nitrogen source on the growth rate, biochemcial composition and polyphenol content of Spirulina platensis. Algal Research 35, 471-478.
Soni RA, K Sudhakar & RS Rana (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports 5, 327-336.
Stanley HO, CB Ogbonna & GO Abu (2017). Exploration of one-factor rsm to optimize the concentration of organic fraction of municipal solid waste (OFMSW) for biogas production. International Journal of Waste Resources 7, 293.
Sukumaran P, R Nuli, N Halimoon, S Simoh, H Omar & A Ismail (2018). Formulation of cost-effective medium using urea as a nitrogen source for Arthospira platensis cultivation under real environment. Annual Research & Review in Biology 22(2), 1-12.
Ulya S, S Sedjati & E Yudiati (2018). Kandungan protein Spirulina platensis pada media kultur dengan konsentrasi nitrat (KNO3) yang berbeda. Buletin Oseanografi Marina 7(2), 98.
Xie T, Y Xia, Y Zeng, X Li & Y Zhang (2017). Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresource Technology 233, 247–255.
Zhao O, JF Kennedy & X Wang (2011). Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus Officinalis using response surface methodology. International Journal of Biological Macromolecules 49, 181-187.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.